判断是否为完全二叉树

判断是否为完全二叉树的关键也是找到不饱和节点。

思路:

由于完全二叉树在每一层非空节点都是一个接一个连续分布的,不可能出现两个非空节点之间交叉一个空节点。

通过层序遍历从上往下,从左往右将每一个节点(包括非空节点)都放到队列里
在出队列的过程中,如果遇到空节点,则跳出循环
跳出循环后,然后再判断队列中剩下的元素是否有非空节点:
有非空节点:非完全二叉树;
没有非空节点(全是空节点):完全二叉树。

 #include<iostream>
#include<stdlib.h>
#include<bits/stdc++.h>
#include<queue> 
#define ElemType int
using namespace std;
typedef struct BiTNode{
	ElemType data;
	struct BiTNode *lchild,*rchild;
}TNode,*Tree;
//int treenum[]={1,2,4,0,0,5,0,0,3,0,0};
int treenum[]={1,2,0,5,0,0,3,0,0};
int k;
void createTree(Tree &T,int &k)
{
	ElemType n;
//	printf("输入为0停止!\n"); 
//	scanf("%d",&n);
	if(treenum[k]==0){
		T=NULL;
		k++;
	}
	else{
		T=new TNode;
		T->data=treenum[k];
		k++;
//		cout<<"T="<<T->data<<"k="<<k<<endl; 
		createTree(T->lchild,k);
		createTree(T->rchild,k);
	}
}
//先序遍历 
int PreTree(Tree &T)
{
	if(T==NULL){
		return 0;
	}
	else{
		cout<<T->data;
		PreTree(T->lchild);
		PreTree(T->rchild); 
	}
}
//判断完全二叉树
bool isCompleteTree(Tree T){
	if(T==NULL){
		return false;
	}
	queue<Tree>Q;
	Tree cur,temp;
	Q.push(T);
	while(Q.size()!=0){
		cur=Q.front();
		Q.pop();
		if(cur==NULL){
			break;
		}
		else{
			Q.push(cur->lchild); //将cur的左孩子加入队列,层序遍历 
			Q.push(cur->rchild); //将cur的右孩子加入队列,层序遍历 
		}
	}
	while(Q.size()!=0)
	{
		cur=Q.front();
		if(cur){
			return false;
		}
				
	}
	return true;
}
int main()
{
	Tree T;
	k=0;
	createTree(T,k);
	cout<<isCompleteTree(T)<<endl; 
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值