ACM_34_韩信点兵

本文介绍了如何运用同余定理解决韩信点兵的问题,通过找到除数3、5、7的特定倍数,确保余数满足条件,并找到最小的总人数解。
摘要由CSDN通过智能技术生成

描述

相传韩信才智过人,从不直接清点自己军队的人数,只要让士兵先后以三人一排、五人一排、七人一排地变换队形,而他每次只掠一眼队伍的排尾就知道总人数了。输入3个非负整数a,b,c
,表示每种队形排尾的人数(a < 3,b < 5, c < 7),输出总人数的最小值(或报告无解)。已知总人数不小于10,不超过100 。

输入

输入3个非负整数a,b,c ,表示每种队形排尾的人数(a < 3,b < 5,c < 7)。例如,输入:2 4 5

输出

输出总人数的最小值(或报告无解,即输出No answer)。实例,输出:89

利用同余定理及其特性:

两个整数a、b,若它们除以整数m所得的余数相等,则称a与b对于模m同余或a同余于b模m;记作 a≡b (mod m)

首先设总人数为sum,余数分别为a,b,c。设计一个表达式可以用来表示sum。
除数分别为3,5,7。为了使余数得到a,b,c 。先使得三个数分别余1。
1.针对3来说, 还要兼容5和7,所以系数必须是5和7的倍数。 那么57=35。35%3=2。那么再乘以2。70%3=1。
同理,对于除数5来说,3
7=21。同时21%5=1。
同理,对于除

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值