- 博客(3)
- 收藏
- 关注
原创 [paper]Discovering Models from Structural and Behavioral Brain Imaging Data
仅用于个人记录与帮助理解基于图的block modeling:Existing approaches:运用单一的基于structural graph或者behavioral graph实现图的简化(块聚类); OURS:同时学习structural graph、behavioral graph,建立新的模型(不仅学习二者之间的cohesive blocks,同时学习二者之间的inter...
2019-03-06 11:18:56 174
原创 [paper]Interpretable Representation Learning for Healthcare via Capturing Disease Progression
加入时间衰退因子以及注意力机制的时间序列的病情诊断预测。预测下一次住院就诊的病情的主要类型。通过电子病历查看病人检查情况,根据不同症状出现的不同时间加入注意力机制,长记忆的权重不一定比短时间的权重低,根据症状的不同对当前病情产生的不同影响来确定权重(是否采用知识图谱或是其他方法?)数据的无序性是如何体现的?1.基本思想:对于慢性病的注意力权重高于急性症状的注意力权重。2.D...
2019-03-06 11:18:18 442
原创 [paper]Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition
一.基本思想提出了一种新的 ST-GCN,即时空图卷积网络模型,用于解决基于人体骨架关键点的人类动作识别问题。动作是基于时间关系以及不同部位关键点之间的联系的。考虑到以上因素提出Spatial Temporal的卷积网络。1.空间上:将骨架之间的关键点作为空间关系的输入(存在着不同点之间邻域大小不定的困难,考虑到用基于Graph的CNN网络模型);2.时间上:使用视频数据,利用图片之间...
2019-03-06 11:17:56 5635 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人