问题描述:
在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
解法1:
public class Solution {
/**
* 思路:由于元素在二维数组中是有序排列,因此可以从四个角开始查找,用两个指针分别代表行号和列号,查找一个元素的过程可以变成:
* 先用行指针找到目标整数所在的行,然后用列指针定位目标整数(顺序换过来也可以)。这样的话查找一个元素的遍历的次数最多是(行数+列数),记行数为M,列数为N,则时间复杂度为O(M+N)
*/
public boolean Find(int target, int [][] array) {
/* 首先判断特殊情况*/
if(array == null || array.length <= 0) {
return false;
}
// 从右上角开始查找
int row = 0, col = array[0].length - 1;
while(row < array.length && col >= 0) {
if (array[row][col] == target) {
return true;
}
if (array[row][col] > target) {
col--;
} else {
row++;
}
}
return false;
}
}
时间复杂度:O(M+N),M代表行数,N代表列数
解法2
遍历每一行,每一行利用二分法查找,找不到就向下找下一行。
public class Solution {
public boolean Find(int target, int [][] array) {
/* 首先判断特殊情况*/
if(array == null || array.length <= 0) {
return false;
}
int len = array.length;
for (int i = 0; i < len; i++) {
int low = 0, high = array[i].length - 1;
while(low <= high) {
int mid = (low + high) / 2;
if (array[i][mid] == target) {
return true;
}
// 如果大于目标整数,则说明要向左查找,目标可能在左边
if(array[i][mid] > target) {
high = mid - 1;
} else { // 否则向右查找
low = mid + 1;
}
}
}
return false;
}
}
时间复杂度O(MlogN), M代表行数,N代表列数。