H - Connections between cities
【解析】
先 用最小生成树生成树,(可以不连通,然而并不影响,直接当森林处理就好)-> 并查集
后 fnd 一下 ,如果不在一颗树中,输出 Not connected 即可
在一棵树中,求 lca 算 dis
【关于数据】
使用倍增求的时候,p[ n ][ 15 ] ->开到15即可,因为 2^14=16384(题中最多1w个点)
【个人总结】
竟然因为 求dis [ ] 数组时放在了dfs(v,x) 后面 WA 了 3 遍,GG 怎么这么菜= =
【附上AC代码】
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
inline int wread(){
char c(getchar ());int wans(0),flag(1);
while (c<'0' || c>'9'){if (c=='-') flag=-1;c=getchar();}
while (c>='0' && c<='9'){wans=wans*10+c-'0';c=getchar();}
return wans*=flag;
}
int n,m,c;
int K,f[10007];
bool vis[10007];
struct node{int u,v,w;}e[10006];
void ad (int u,int v,int w){e[++K].v=v;e[K].u=u;e[K].w=w;}
int K2,hed2[10007];
int p[10007][15],dep[10007],dis[10007];//14
struct node2{int v,nxt,w;}e2[20006];
void ad2(int u,int v,int w){e2[++K2].v=v;e2[K2].w=w;e2[K2].nxt=hed2[u];hed2[u]=K2;}
void Begin_solve(){
memset (hed2,-1,sizeof hed2);
memset (vis,false,sizeof vis);
memset (p,0,sizeof p);
K=K2=0;
}
int fnd (int x){return x==f[x]?x:f[x]=fnd(f[x]);}
bool e666 (const node & x,const node & y){return x.w<y.w;}
void dfs (int x,int fa){
vis[x]=true;
p[x][0]=fa;
for (int i=1;i<=14;++i) p[x][i] = p[p[x][i-1]][i-1];
for (int i(hed2[x]);i!=-1;i=e2[i].nxt){
int v(e2[i].v);
if (v==fa) continue;
dis[v]=dis[x]+e2[i].w;
dep[v]=dep[x]+1;
dfs(v,x);
}
}
int lca (int a,int b){
if (dep[a]>dep[b]) swap (a,b);
for (int i=14;i>=0;--i)
if (dep[a]<=dep[p[b][i]]) b=p[b][i];
if (a==b) return a;
for (int i=14;i>=0;--i){
if (p[a][i] == p[b][i]) continue;
a=p[a][i];b=p[b][i];
}
return p[a][0];
}
int main (){
while (~scanf ("%d%d%d",&n,&m,&c)){
Begin_solve();
for (int i(1);i<=m;++i){
int u(wread()),v(wread()),w(wread());
ad(u,v,w);
}
//最小生成树
for (int i(1);i<=n;++i) f[i]=i;
sort (e+1,e+K+1,e666);
for (int i(1);i<=K;++i){
int dx=fnd(e[i].u),dy=fnd(e[i].v);
if (dx==dy) continue;
f[dx]=dy;
ad2(e[i].u,e[i].v,e[i].w);ad2(e[i].v,e[i].u,e[i].w);
}
//跑dfs
for (int i=1;i<=n;++i)
if (!vis[i])
dep[i]=1, dis[i]=0, dfs (i,i);
//求解
while (c--){
int u(wread()),v(wread());
int dx(fnd(u)),dy(fnd(v));
if (dx!=dy) {puts("Not connected");continue;}
printf("%d\n",dis[u]+dis[v]-2*dis[lca(u,v)]);
}
}
return 0;
}