有50级台阶,每次走一阶或两阶,有多少种走法?

在网上看到这个问题,有人给出了代码,用的是求Fibonacci数列前n项和的原理,代码如下:

int Fibonacci(int n)
{
   int result[3] = {1, 2};
   if (num < 2)
   {
      return result[n];
   }
   return Fibonacci(n - 1) + Fibonacci(n - 2);
}

 这个方法的确很妙,但是如果有三级台阶的话,代3进函数,那函数返回的是只有两种走法,可是三级台阶明明是应该有三种走法的分别为(1,1,1)(1,2)(2,1),难道题目的意思是规定(1,2)(2,1)都算同一种走法?

 我把代码稍微改了一下,使得(12)(21)这样的走法都计算在内,代码如下:

int Fibonacci(int num)

{
  int result[3] = {0, 1, 2};
  if (num < 3)
 {
     return result[num];
  }
return Fibonacci(num - 1) + Fibonacci(num - 2);

}


 这种递归的方法虽然在理论上可以解决这个问题,但是实际执行这个程序的时候,最多就能测试到30多,再往上就不行了,运算量太大了。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值