01背包问题详解-----动态规划

题目:给定N个项目的权重和价值(利润),将这些项目放入最大容量W的背包中,以获得背包中的最大总值(利润)。

 

递归解法:

此时我们由这个问题得到了一个子问题通用的解决方案,来检查我得到的利润
通过挑选项目或不挑选该项目这也就是选与不选的问题


当我选择物品时,我需要将其从计算中移除,因为您已经对当前物品进行了处理,并通过拾取物品的重量减少了背包容量。
 
当我不选择物品时,我需要从计算中删除它,因为你已经在当前物品上工作,并保持背包的容量,因为此时我们还没有选择物品。

递归过程如下图:

代码如下:

int wt[maxn],val[maxn];
int knap(int W,int wt[],int val[],int n){
	if(n==0||W==0)
		return 0;
	if(wt[n-1]>W) 
		return knap(W,wt,val,n-1);
	else 
		return max(val[n-1]+knap(W-wt[n-1],wt,val,n-1),knap(W,wt,val,n-1));
}

这种解法复杂度为指数级别,存在大量的重复计算。

 

动态规划解法:

令数组dp[i][v]表示前i件物品在容量为v时,所获得的最大价值,则状态转移方程为

           dp[i][v]=max(dp[i-1][v-w[i]]+val[i] , dp[i-1][v]),

其中w是物品的质量数组,val为物品价值数组。

代码如下:

int W,n,wt[maxn],val[maxn],dp[maxn][maxv];    //W为总重量,n为物品总数
int knapSack(int W,int wt[],int val[],int n){
	for(int i=1;i<=n;i++)
		for(int v=W;v>0;v--){
			if(wt[i-1]<=W)
				dp[i][v]=max(val[i-1]+dp[i-1][v-wt[i-1]],dp[i-1][v]);
			else 
				dp[i][v]=dp[i-1][v];
		}
		return dp[n][W];
}

DP优于递归的好处:

动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。

动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再合并子问题的解以得出原问题的解。

通常许多子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量:一旦某个给定子问题的解已经算出,则将其记忆化

存储,以便下次需要同一个子问题解之时直接查表。这种做法在重复子问题的数目关于输入的规模呈指数增速时特别有用。
 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值