SnackDown 2017 Online Elimination Round 记录 & 简要题解

本文记录了作者参加SnackDown 2017在线淘汰赛的过程,与队友wdz合作解题,分享了比赛中遇到的原题以及解题策略,包括动态规划、图论、几何等题目,最终取得好成绩。
摘要由CSDN通过智能技术生成

比赛

用一句话总结一下这场比赛。。。好 tm 多原题啊。。。

和 wdz 远程双排,约好分别看奇数位置和偶数位置的题。。。

开场点开 SPCLN。。发现是 TC 原题 + HNOI 原题。。。拖了个 Dinic 的板子抢了一血。。。感觉挺不错。。。

wdz 那边出了一点点小事故。。。题目的顺序是按照 AC 人数动态排序的。。。然后他就交错题贡献了两发 RE(滑稽

A 掉 SPCLN 后点开了 Four Points。。。感觉就是 xjb 构造一下的几何题,没什么意思。。。写了一会儿恶心得写不下去先放下了。。。从 wdz 那里接来了 MEXDIV 的锅。。。随手写了一下就 A 了。。。同一时间 wdz A掉了 CHEFPRAD。。。成为光荣的 3 题队。。。

发现 PLUSMUL 是 SHOI 原题画风。。。甩锅给 wdz 跑路。。。于是 10 分钟后成为光荣的 4 题队。。。

然后和 wdz 开始并行工作。。。窝们分别开了 ANCESTOR 和 ROBOTDAG。。。然后双双卡在两道傻逼题上。。。接近一个半小时没有 AC。。。2 小时后窝终于发现了 ANCESTOR 的傻逼错误,改了然后就过了。。。

然后点开 BLACKDOM。。。BC 原题 + 傻题。。。虽然我没有写过但是非常 simple。。。 10分钟写完就 A 了。。。又过了 20 分钟 wdz 终于 A 了 ROBOTDAG。。。成为光荣的 7 题队。。。

那时候我正在开 Prefix XOR。。。最后两道题还没有开。。。几何题还坑在我这儿。。。和 wdz 进行亲切友好的交流之后,wdz 表示他会做 WIQ 然后就去开了。。。

Prefix XOR 因为一些感动到不行的原因贡献了两三发 WA。。。然后就 A 了。。。此时距离比赛结束还有 100 分钟。。。wdz 在肝 WIQ。。。进过一番商议之后。。。窝决定先去做几何。。。然后就发现自己的算法有些漏洞。。。花了 40 分钟。。。贡献了 3 / 4 发 WA 终于 A 了。。。在距离比赛结束 1 个小时前成为光荣的 9 题队。。。然后就发现 DaLaBengBaBanDeBeiDiBuDuoBiLuWeng 在一个小时前就 AK 了。。。

然后 wdz 自信表示他能过 WIQ。。。窝就去尝试拯救一下最后一题咯。。。仔细想了一下发现是动态最小生成树裸题。。。想起来 [HNOI 2010 城市建设]。。。于是去拖了自己曾经的板子魔改了一下。。。在 30 分钟后 A 掉了。。。

与此同时,wdz 在 WA 了两发 WIQ 之后也 A 掉啦,于是我们就。。。AK 了?Rk 4 ???

woc 幸福来得太突然要感动哭了。。。不知道有没有机会去印度旅游一下啊。。。

最后 30 分钟。。。围观各路dalao切题如流水。。。又有两个队 AK 然后我们就变成 Rk 6 了。。。罚时糟糕得不行啊。。。

体验:

  1. 窝在整场比赛写了 3 棵不同形态和功能的线段树。。。有 2 棵写残了。。。
  2. 计算几何最好准备一些板子。。。
  3. 罚时好惨。。。
  4. 多刷原题还是很重要的

题解

FOURPTS :四个点都在凸包上就有解,随便构造一下。。。

ANCESTOR:考虑 DFS 序,转化为一个二维的矩形加、单点询问问题

GQUERY:参见 HNOI 2010 城市建设

SPCLN:参加 HNOI 2013 切糕

BLACKCOM:忘了原题是哪一题了。。。有结论:如果有一棵 x 个点,mi 个黑点的子树;有一棵 x 个点,mx 个黑点的子树;那么 x 个点,mi <= i <= mx 个黑点的子树都能构造出来。于是可以把可行性DP转化成最优化DP。。。

WIQ:wdz 切掉的。。。太大了。。。窝不太会。。。

CHEFPRAD:wdz 秒掉的。。。窝没有看。。。

ROBOTDAG:把每个时刻、每个位置拆出来一个点,然后二分答案/动态加点,流一流。

MEXDIV:双指针+前缀和优化,为了支持加点删点求 mex。。。你可能还需要一个线段树/set

PREFIXOR:首先求异或前缀和 sum[] 。考虑固定每个左端点 l ,可行的右端点是一个区间,不妨设这个区间为

高斯消元法是一种线性代数中求解线性方程组的常用方法,它通过一系列的行变换将增广矩阵转化为上三角矩阵,从而求出方程组的解。 下面我们来详细介绍高斯消元法的步骤: 1. 将增广矩阵写成一个矩阵形式:$$\left[\begin{array}{cccc|c}a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\\vdots & \vdots & \ddots & \vdots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn} & b_n \\\end{array}\right]$$ 2. 选择第一列系数最大的行作为第一步的主元素所在的行,将该行移到第一行。 3. 通过消元操作将第一列的其他元素变成零。具体地,对于第 $i$ 行,我们将其乘以一个系数 $m_i$ 加到第一行上,使得第一行的第 $i$ 个元素变成零。需要注意的是,系数 $m_i$ 的取值为:$$m_i = -\frac{a_{i1}}{a_{11}}$$ 4. 将第二列系数最大的行作为第二步的主元素所在的行,将该行移到第二行。 5. 通过消元操作将第二列的其他元素变成零。具体地,对于第 $i$ 行,我们将其乘以一个系数 $m_i$ 加到第二行上,使得第二行的第 $i$ 个元素变成零。需要注意的是,系数 $m_i$ 的取值为:$$m_i = -\frac{a_{i2}}{a_{22}}$$ 6. 重复上述步骤,直到将增广矩阵转化为上三角矩阵。此时,方程组的解可以通过回代得到。 7. 回代过程:从最后一行开始,依次求解每个未知量。具体地,对于第 $i$ 个未知量,我们先将第 $i$ 行的解代入第 $i$ 个方程中,然后依次代入已知的第 $i+1$ 到第 $n$ 个未知量的解,得到第 $i$ 个未知量的解。 下面是高斯消元法的代码实现: ```c++ const double eps = 1e-8; int gauss(vector<vector<double>>& a, vector<double>& b) { int n = a.size(); int m = a[0].size() - 1; vector<int> p(n); for (int i = 0; i < n; i++) { p[i] = i; } for (int k = 0; k < m; k++) { int pivot = k; for (int i = k; i < n; i++) { if (abs(a[i][k]) > abs(a[pivot][k])) { pivot = i; } } swap(a[pivot], a[k]); swap(b[pivot], b[k]); if (abs(a[k][k]) < eps) { return -1; } for (int i = k + 1; i < n; i++) { double f = a[i][k] / a[k][k]; b[i] -= f * b[k]; for (int j = k; j < m; j++) { a[i][j] -= f * a[k][j]; } } } vector<double> x(m); for (int k = m - 1; k >= 0; k--) { x[k] = b[k]; for (int i = k + 1; i < m; i++) { x[k] -= a[k][i] * x[i]; } x[k] /= a[k][k]; } return 0; } ``` 其中,输入参数为一个 $n \times (m+1)$ 的增广矩阵 $A$ 和一个长度为 $n$ 的向量 $b$,输出为 $0$ 或者 $-1$,表示方程组有唯一解或者无解,解存储在长度为 $m$ 的向量 $x$ 中。 需要注意的是,为了防止精度误差,我们在进行消元操作时,如果某个数的绝对值小于一个极小值 $\epsilon$,则将其视为零。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值