VitaLemon__的专栏

代码即文字

hdoj1159 Common Subsequence

题意:

找两个字符串的最长公共子序列(Loggest Common Subsequence, LCS)。用“表格法”(姑且这么叫吧)就可以很快地做出来,至于表格法的原理,以后有时间再整理吧,一时半会也整理不出来。

比如给出的第一组输入:
第一组样例

具体的转移方程是:

// dp[i][j]表示在到了字符串sa的i位置和字符串sb的j位置时,可以达到的最大值,因为这里做了一个第一行列为0的初始化,所以对应到字符串时,下标要减去1
if (str_a[i-1] == str_b[j-1]) {
    dp[i][j] = 1 + dp[i-1][j-1];
} else {
    dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
}


代码(78ms, 5692KB):

#include <iostream>
#include <cstring>      // memset
#include <string>
#include <algorithm>    // max
using namespace std;

const int maxn = 1001;
int dp[maxn][maxn];

int main() {
//  freopen("in.txt", "r", stdin);
    string sa, sb;
    while (cin >> sa >> sb) {
        memset(dp, 0, sizeof dp);
        int la = sa.size(), lb = sb.size();

        for (int i = 1; i <= la; ++i) {
            for (int j = 1; j <= lb; ++j) {
                if (sa[i-1] == sb[j-1]) {
                    dp[i][j] = 1 + dp[i-1][j-1];
                } else {
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
                }
            }
        }

        cout << dp[la][lb] << endl;
    }
    return 0;
}


思考:

如果是多个字符串,又怎么处理呢?

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/VitaLemon__/article/details/50961734
文章标签: dp
个人分类: HDOJ刷题笔记
上一篇hdoj1087 Super Jumping! Jumping! Jumping!(DP)
下一篇hdoj4540 威威猫系列故事——打地鼠
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭