题目描述
作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。
然而数据中有L=R的情况,请特判这种情况,输出0/1。
输入输出格式
输入格式:
输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。再接下来M行,每行两个正整数L,R表示一个询问。
输出格式:
包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)
输入输出样例
输入样例#1: 复制
6 4 1 2 3 3 3 2 2 6 1 3 3 5 1 6
输出样例#1: 复制
2/5 0/1 1/1 4/15
说明
30%的数据中 N,M ≤ 5000;
60%的数据中 N,M ≤ 25000;
100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。
据说是个比较难的莫队了,具体推导过程过程不写了,主要是记一下自己的板子
AC代码:
/* Lyl */
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define linf 0x3f3f3f3f3f3f3f3fLL
#define pi acos(-1.0)
#define ms(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn = 50005;
int block, res;
struct Query{
int id,l,r;
bool operator<(const Query &q)const{
if(l/block==q.l/block) return r<q.r;
return l/block<q.l/block;
}
}query[maxn];
ll gcd(ll a, ll b){
if(b==0) return a;
return gcd(b,a%b);
}
int C[maxn];
ll cnt[maxn], ansx[maxn], ansy[maxn];
void add(int x){
res-=cnt[x]*cnt[x];
++cnt[x];
res+=cnt[x]*cnt[x];
}
void del(int x){
res-=cnt[x]*cnt[x];
--cnt[x];
res+=cnt[x]*cnt[x];
}
int main(){
int n, m;
scanf("%d%d",&n, &m);
block=sqrt(n);
for(int i=1; i<=n; i++) scanf("%d",C+i);
for(int i=0; i<m; i++){
scanf("%d%d", &query[i].l, &query[i].r);
query[i].id=i;
}
sort(query,query+m);
int l=1, r=0; res=0;
for(int i=0; i<m; i++)
{
if(query[i].l==query[i].r){
ansx[query[i].id]=0; ansy[query[i].id]=1;
continue;
}
while(l<query[i].l){
del(C[l]);
++l;
}
while(l>query[i].l){
--l;
add(C[l]);
}
while(r<query[i].r){
++r;
add(C[r]);
}
while(r>query[i].r){
del(C[r]);
--r;
}
ll a=res-(query[i].r-query[i].l+1),
b=(query[i].r-query[i].l+1LL)*(query[i].r-query[i].l),c=gcd(b,a);
ansx[query[i].id]=a/c;
ansy[query[i].id]=b/c;
}
for(int i=0; i<m; i++)
printf("%lld/%lld\n",ansx[i],ansy[i]);
return 0;
}