10247: 爱好数学的国王(唯一分解定理)

题目描述

Z 国的国王是一个非常爱好数学的国王。一天他对着他的那些大臣说:“素数真是一种神奇的正整数,除了1和它本身外,不能被其他任何正整数整除,2是最小的素数,有无穷多个啊……它还有一个美妙的名字:质数,……数学多么有趣啊……”。  
Z 国今年风调雨顺,百姓丰衣足食。为了奖励他那帮管理有方的大臣,他决定把全部的 N 元奖金平均分配给其中的 K 位大臣,但酷爱数学的国王要求这 K 位大臣每人拿到的奖金必须是个素数。哪个大臣能够解决这个数学问题,国王就把奖金给这个大臣和另外的 K-1 人。  
 大臣们都想自己获得更多的奖金,所以希望分得奖金的大臣人数 K 越少越好。机智的大臣请来了“编程大侠”来帮忙解决这个问题。国王的间谍得知了这个情况后向国王汇报了大臣的行为。国王早就听说“编程大侠”的厉害,于是决定问 T 次这个问题,来试探一下 
“编程大侠”的真正实力。

 

输入

输入共T+1行。
第1行一个整数T,表示国王问了T次。
接下来T行每行一个整数N,表示国王打算分配给大臣的总奖金。

 

输出

输出共T行。
第i行一个整数K,表示最少多少位大臣来平分输入中对应的全部奖金。如果找不到满足国王要求的分配办法,请输出“0”(输出时不包含双引号)。

 

样例输入

复制样例数据

3 
3 
4 
100 

样例输出

1
2
20

提示

国王共问了 3 次。  
第一次国王说:“我们总共有 3 元奖金”。“编程大侠”说:“最少分配给 1 位大臣,他可以获得所有奖金,即 3 元,因为 3 是一个素数”。  
第二次国王说:“我们总共有 4 元奖金”。“编程大侠”说:“最少分配给 2 位大臣,他们每人可以获得 2 元奖金,因为 2 是一个素数”。  
第三次国王说:“我们总共有 100 元奖金”。“编程大侠”说:“最少分配给 20 位大臣,他们每人可以获得 5 元奖金,因为 5 是一个素数”。  

50%的测试点输入数据保证 1≤T≤5,1≤N≤10000 
70%的测试点输入数据保证 1≤T≤10,1≤N≤1000000000  
100%的测试点输入数据保证 1≤T≤10,1≤N≤2000000000  

 

来源/分类

2015年慈溪市小学生计算机程序设计比赛 

 

唯一分解定理 :任何一个大于1的自然数 ,都可以唯一分解成有限个质数的乘积  ,这里  均为质数,其诸指数  是正整数。

 

所以,题目中所说的  每个人所得到的最大奖金就是 P_{n} 了, 所以 k = n / P_{n} 。

代码实现还是蛮简单的,注意坑点 : 如果找不到满足国王要求的分配办法,请输出“0”。

 

#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define linf 0x3f3f3f3f3f3f3f3fll
#define pi acos(-1.0)
#define ms(a,b) memset(a,b,sizeof(a))
#define nl endl
#define FAST_IO ios::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL)
using namespace std;
typedef long long ll;
ll qpow(ll x, ll y, ll mod){ll s=1;while(y){if(y&1)s=s*x%mod;x=x*x%mod;y>>=1;}return s;}
//ll qpow(ll a, ll b){ll s=1;while(b>0){if(b%2==1)s=s*a;a=a*a;b=b>>1;}return s;
inline int read(){int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();return x*f;}
 
 
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        ll n;
        cin>>n;
        ll ans = n, tn = n;
        for(int i=2;i*i<=n;i++)
            while(tn%i==0)
                tn /= i, ans = i;
       // cout<<tn << " -- " <<ans<<nl;
        ans = max(tn,ans);
        if(n == 1) puts("0");
        else cout<<(n/ans)<<nl;
 
    }
 
    return 0;
}

 

在数论中,唯一分解定理(Unique Factorization Theorem)也被称为质因数分解定理,它指出每个大于1的整数都可以唯一地表示为质数的乘积。在Python中,我们可以使用以下方法来实现唯一分解定理: 1. 首先,我们可以编写一个函数来判断一个数是否为质数。一个简单的方法是从2开始,逐个判断该数是否能被小于它的数整除,如果能整除,则不是质数。 2. 接下来,我们可以编写一个函数来获取一个数的所有质因数。我们可以从2开始,逐个判断该数是否能被2整除,如果可以,则将2添加到质因数列表中,并将该数除以2。然后再继续判断是否能被3整除,如果可以,则将3添加到质因数列表中,并将该数除以3。依此类推,直到该数变为1为止。 3. 最后,我们可以编写一个函数来实现唯一分解定理。该函数将调用上述获取质因数的函数,并将质因数列表返回。 下面是一个示例代码: ```python def is_prime(n): if n <= 1: return False for i in range(2, int(n**0.5) + 1): if n % i == 0: return False return True def get_prime_factors(n): factors = [] i = 2 while n > 1: if n % i == 0: factors.append(i) n //= i else: i += 1 return factors def unique_factorization(n): if n <= 1: return [] prime_factors = get_prime_factors(n) return prime_factors # 示例用法 number = 36 factors = unique_factorization(number) print(f"唯一分解定理:{number} = {' × '.join(map(str, factors))}") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值