题目描述
Z 国的国王是一个非常爱好数学的国王。一天他对着他的那些大臣说:“素数真是一种神奇的正整数,除了1和它本身外,不能被其他任何正整数整除,2是最小的素数,有无穷多个啊……它还有一个美妙的名字:质数,……数学多么有趣啊……”。
Z 国今年风调雨顺,百姓丰衣足食。为了奖励他那帮管理有方的大臣,他决定把全部的 N 元奖金平均分配给其中的 K 位大臣,但酷爱数学的国王要求这 K 位大臣每人拿到的奖金必须是个素数。哪个大臣能够解决这个数学问题,国王就把奖金给这个大臣和另外的 K-1 人。
大臣们都想自己获得更多的奖金,所以希望分得奖金的大臣人数 K 越少越好。机智的大臣请来了“编程大侠”来帮忙解决这个问题。国王的间谍得知了这个情况后向国王汇报了大臣的行为。国王早就听说“编程大侠”的厉害,于是决定问 T 次这个问题,来试探一下
“编程大侠”的真正实力。
输入
输入共T+1行。
第1行一个整数T,表示国王问了T次。
接下来T行每行一个整数N,表示国王打算分配给大臣的总奖金。
输出
输出共T行。
第i行一个整数K,表示最少多少位大臣来平分输入中对应的全部奖金。如果找不到满足国王要求的分配办法,请输出“0”(输出时不包含双引号)。
样例输入
复制样例数据
3 3 4 100
样例输出
1 2 20
提示
国王共问了 3 次。
第一次国王说:“我们总共有 3 元奖金”。“编程大侠”说:“最少分配给 1 位大臣,他可以获得所有奖金,即 3 元,因为 3 是一个素数”。
第二次国王说:“我们总共有 4 元奖金”。“编程大侠”说:“最少分配给 2 位大臣,他们每人可以获得 2 元奖金,因为 2 是一个素数”。
第三次国王说:“我们总共有 100 元奖金”。“编程大侠”说:“最少分配给 20 位大臣,他们每人可以获得 5 元奖金,因为 5 是一个素数”。
50%的测试点输入数据保证 1≤T≤5,1≤N≤10000
70%的测试点输入数据保证 1≤T≤10,1≤N≤1000000000
100%的测试点输入数据保证 1≤T≤10,1≤N≤2000000000
来源/分类
唯一分解定理 :任何一个大于1的自然数 ,都可以唯一分解成有限个质数的乘积 ,这里 均为质数,其诸指数 是正整数。
所以,题目中所说的 每个人所得到的最大奖金就是 了, 所以 k = n / 。
代码实现还是蛮简单的,注意坑点 : 如果找不到满足国王要求的分配办法,请输出“0”。
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define linf 0x3f3f3f3f3f3f3f3fll
#define pi acos(-1.0)
#define ms(a,b) memset(a,b,sizeof(a))
#define nl endl
#define FAST_IO ios::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL)
using namespace std;
typedef long long ll;
ll qpow(ll x, ll y, ll mod){ll s=1;while(y){if(y&1)s=s*x%mod;x=x*x%mod;y>>=1;}return s;}
//ll qpow(ll a, ll b){ll s=1;while(b>0){if(b%2==1)s=s*a;a=a*a;b=b>>1;}return s;
inline int read(){int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();return x*f;}
int main()
{
int t;
cin>>t;
while(t--)
{
ll n;
cin>>n;
ll ans = n, tn = n;
for(int i=2;i*i<=n;i++)
while(tn%i==0)
tn /= i, ans = i;
// cout<<tn << " -- " <<ans<<nl;
ans = max(tn,ans);
if(n == 1) puts("0");
else cout<<(n/ans)<<nl;
}
return 0;
}