自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 交互式Web目标及分割标注工具——WebSeg正式开源

WebSeg是基于飞桨开发的一个高效智能的交互式分割标注Web服务。涵盖了高精度和轻量级等不同方向的高质量交互式分割模型,方便开发者快速实现语义及实例标签的标注,降低标注成本。 在以前需要进行分割,需要本地进行安装分割标注软件,手动点击边缘。但是采用WebSeg工具,无需下载标注软件,配置环境。并且可以使用先进的AI辅助标注工具,效率提示5-10倍。仅需以下三步即可完成标注:上传图片至WebSeg平台,创建标注任务。 采用交互式AI标注工具,仅需2-3次点击,即可框选目标轮廓。 标注完成后,打包

2022-05-25 17:09:16 262

原创 机器学习的主要流程和问题解决

机器学习的主要流程定义目标模型函数 y=fθ(x)y=f_{\theta }(x)y=fθ​(x)定义损失函数 L(θ)L(\theta )L(θ)采用一定的规则进行优化θ∗=argmin(L)\theta_{*}=\mathbf{arg}min(L)θ∗​=argmin(L)训练的整体逻辑

2021-11-17 09:08:42 2417

原创 在jetson上编译onnxruntime c++库问题集锦

1. git clone 提示下载失败要下载onnxruntime 的源码,因为存在大量的submodule,需要使用下载才能进行编译,如果下载失败,可以尝试以下方法, git clone --recursive git@github.com:microsoft/onnxruntime.git解决方案1采用阿里云比本地的网络快好多解决方案2如果下载子模块时,有可能会提示fatal: unable to access 'https://github.com/NVlabs/cub.git/':

2021-10-28 20:26:28 304

原创 TensorFlow常用函数

tf.placeholder(tf.float32, [None, 784]) #占位符用于输入变量tf.Variable(tf.zeros([784, 10])) #用于参数权重和偏置tf.matmul(x, W) #矩阵乘法tf.nn.softmax(tf.matmul(x, W)+b) #softmax模型tf.reduce_mean() #求平均值tf.train....

2018-04-07 16:00:57 399

原创 神经网络及深度学习-神经网络结构(6)

下一章我会介绍神经网络可以完美完成手写数字分类的工作。作为准备,介绍一些名词对此是有帮助的,假设我们拥有这样的一个神经网络。 就像上面说到的那样,网络最左边的层被称为输入层,其中的神经元被称为输入神经元,最右边的层或输出层包含着输出神经元。中间的层被称为隐藏层,因为他既不是输入,也不是输出。不要对隐藏层感到害怕,这只是表示它既不是输入也不是输出。这个网络中仅仅拥有一个隐藏层,但是一些神经网络...

2018-04-07 10:15:44 188

原创 人脸识别,结构光名词记录

人脸识别步骤包括Face detection, 对图像中的人脸进行检测,并将结果用矩形框框出来。Haar+Adaboost FacenessNetFace alignment,对检测到的人脸进行姿态的校正,使其人脸尽可能的”正”,通过校正可以提高人脸识别的精度。校正的方法有2D校正、3D校正的方法,3D校正的方法可以使侧脸得到较好的识别。 在进行人脸校正的时候,会有检测特征点的位置这一步...

2018-04-05 19:31:37 740

翻译 神经网络及深度学习-Sigmoid 神经元函数介绍(5)

学习算法听起来很棒。但是,我们如何为神经网络设计这样的算法呢?假设我们有一个感知器网络,我们想用它来学习解决一些问题。例如,对网络的输入可能是来自扫描的手写数字图像的原始像素数据。我们希望网络学习权值和权重,以便网络输出对数字进行正确地分类。为了了解学习是如何工作的,假设我们对网络中的一些权重(或偏置)做了一个小小的改变。我们所希望的是,权重的微小变化只会引起网络输出的相应变化。稍后我们将看到,这...

2018-04-01 20:46:24 2002

翻译 神经网络及深度学习-感知机神经元进一步介绍(4)

让我们对感知机神经元作进一步简化, 这样的条件描述感知机的方式是繁琐的,我们可以对其进行两种形式的修改来简化它。第一个变化是将 作为卷积表示, ,这里w与x分别代表权重和输入向量。第二个改变是将阈值移动到等式的另一边,取而代之的是将其称之为感知机的偏置, 。采用偏置代替阈值,感知机规则可以改写为你可以将其想象为偏置是衡量感知机是否容易输出1的标准。或许采用生物学的名词,偏置是衡量是感知机是...

2018-04-01 14:44:50 375

翻译 神经网络及深度学习-感知机神经元总体介绍(3)

什么是神经网络呢?作为开始,我介绍一种被称为感知机(perceptron)的人工神经元。感知机可以使在1950年到1960年左右由Frank Rosenblatt提出的。感知机的想法是建立在Warren McCulloch 和 Walter Pitts工作的基础上的。今天其他人工神经元模型更为通用。在本书中,以及在现在的研究中,sigmoid神经元更为通用。我们很快就会学习掌握sigmoid神经元...

2018-04-01 14:39:25 405

翻译 神经网络及深度学习-神经网络手写数字识别-动手实现神经网络总体介绍(2)

人类的视觉系统是世界上值得惊讶的事情之一。观察下面的一组手写数字:手写数字图片大多数人都毫不费力的识别了这些数字为504192。这种轻易识别是有欺骗性的,在我们大脑的每个半球,都拥有主视觉皮层,其被称为V1,包含了1.4亿个神经元,它们之间拥有者数以百亿记得联系。然而人类视觉不仅仅涉及到V1,而且包含了V2,V3,V4,V5等一些列视觉皮层,逐步进行着更为复杂的图像处理工作。我们大脑中就像拥有一台...

2018-04-01 14:26:10 305

翻译 神经网络及深度学习-前言(1)

神经网络是有史以来最漂亮的编程范式之一。在传统的编程模式中,我们告诉计算机去做什么,将大的问题分解成各个单独的,精确定义的问题,这样计算机就可以较为容易地实现。与此相反,在神经网络模型中,我们不会告诉计算机怎么去解决我们的问题。取而代之的是它从观测的数据中进行学习,直接指出我们未知问题的答案。从数据中进行自动学习听起来很吸引人。但是,截止到2006年,除了一些特定的问题,我们不知道如何去训练神经网...

2018-04-01 14:18:37 259

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除