- get_level_values
用法:
Index.get_level_values(level)
返回请求级别的值索引。
这主要用于从 MultiIndex 获取单个级别的值,但在 Index 上也提供了兼容性。
参数:
level:整数或字符串
它是整数位置或级别的名称。
返回:
index
调用对象,因为索引中只有一层。
注意:
对于索引,级别应为 0,因为没有多个级别。
例子:
>>> idx = pd.Index(list('abc'))
>>> idx
Index(['a', 'b', 'c'], dtype='object')
通过提供 level 作为整数来获取级别值:
>>> idx.get_level_values(0)
Index(['a', 'b', 'c'], dtype='object')
- unstack
statck(堆叠):该操作会“旋转”或将列中的数据透视到行,即将原来的列转成最内层的行索引
unstack(拆堆):该操作会将行中的数据透视到列,即将最内层的行索引变成列
例子:
data:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5
- stack
result = data.stack()
result:
state number
Ohio one 0
two 1
three 2
Colorado one 3
two 4
three 5
dtype: int32
- unstack
result.unstack()
输出结果:
number one two three
state
Ohio 0 1 2
Colorado 3 4 5
resample
-
resample()进行重采样。
-
重采样(Resampling)指的是把时间序列的频度变为另一个频度的过程。把高频度的数据变为低频度叫做降采样(downsampling),把低频度变为高频度叫做升采样(upsampling)
resample参数如下:
resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start',kind=None, loffset=None, limit=None, base=0)
降采样
考虑因素:
各区间哪边是闭合的(参数:closed)
如何标记各聚合面元,用区间的开头还是末尾(参数:label)
freq取值如下:
In [235]: ts.resample('5min').sum()
Out[235]:
2018-08-03 00:00:00 10
2018-08-03 00:05:00 35
2018-08-03 00:10:00 21
Freq: 5T, dtype: int32