个人认为cnn中conv层对应的是“等变性”(
Equivariance
),由于conv层的卷积核对于特定的特征才会有较大激活值,所以不论 上一层特征图谱(feature map)中的某一特征平移到何处,卷积核都会找到该特征并在此处呈现较大的激活值。这应该就是“等变性”
这种“等变性”是由conv层的 1局部连接 2权值共享 两个特性得到的。
所谓的“形变不变性”,应该指的是,若是特征有较小的形变,那么激活值不会有太多的变化。
个人觉得没有“旋转不变性”,只能通过data argumentation这种方式(人为地对样本做 镜像、旋转、缩放等操作)让CNN自己去学习旋转不变性。
而所谓的“尺度不变性”,个人觉得应该是由类似于SSD这种对不同尺寸(分辨率)的feature map作相同的处理得到的。CNN本身并不具备尺度不变性。