服务器如何设置内网IP地址

本文介绍如何在CentOS系统下通过设置固定IP地址来搭建局域网内的服务器集群,包括配置管理节点和计算节点的具体步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

购买了两台服务器,用于VASP计算,现在一般都要搭建集群方便管理,即一台服务器需要设置成管理节点,其它为计算节点,这就要求所有服务器都位于同一局域网内(内网),并且设置固定IP地址。

服务器是centos系统,这里谈下如何在centos系统下设置固定IP地址。

服务器后面有两个网口,其中一个网口用于连接外网,另一个网口用于连接局域网,对于管理节点来说,这两个网口肯定都要用到的。只是一根网线连外网,一根连到另一台服务器中。

现在打开管理节点的终端,输入:

cd /etc/sysconfig/network-scripts/

再输入

ifconfig

然后可以看到eth0,eth1等信息。由于我这里eth0是连外网的,IP就默认自动分配。现在开始编辑eth1信息,输入:

vi ifcfg-eth1

编辑信息,要修改或添加的地方我都用红色表示,建议ONBOOT=yes,以后开机就会自动联网:

TYPE=Ethernet
PROXY_METHOD=none
BROWSER_ONLY=no
BOOTPROTO=none
DEFROUTE=yes
IPV4_FAILURE_FATAL=no
IPV6INIT=yes
IPV6_AUTOCONF=yes
IPV6_DEFROUTE=yes
IPV6_FAILURE_FATAL=no
IPV6_ADDR_GEN_MODE=stable-privacy
NAME=eth1
UUID=ba47763d-08cc-4c32-b119-8a18571a4949
DEVICE=eth1
ONBOOT=yes
IPADDR=192.168.1.1
PREFIX=24
GATEWAY=192.168.1.1
NETMASK=255.255.255.0

最后重启网卡生效:

systemctl restart network

服务器2的IP设置和管理节点基本相同,比如我的服务器2网线插在2号端口,则设置ifcfg-eth1,只是IP地址要换成2-254之间的数字,如下面

IPADDR=192.168.1.2

现在管理节点测试

ping 192.168.1.2

显示可以连接,局域网搭建成功。

### 光学字符识别 (OCR) 模型使用教程与最佳实践 #### 一、理解 OCR 技术原理 光学字符识别(OCR)技术涉及将图像形式的文字转换为机器编码文本。这一过程通常包括以下几个阶段:预处理、分割、特征提取以及分类[^1]。 #### 二、准备环境 对于想要快速上手并测试 OCR 功能的人来说,可以考虑使用现成的工具库如 Tesseract 或 EasyOCR 来简化开发流程。如果倾向于从头构建,则可能需要用到 TensorFlow 等框架支持下的自定义神经网络训练方案[^3]。 #### 三、数据收集与标注 为了获得良好的识别效果,在实际应用前需准备好足够的样本图片用于训练模型。这些图片应该覆盖目标场景下可能出现的各种字体样式、大小变化等因素,并对其进行精确标记以便后续监督式学习之用。 #### 四、图像预处理 原始获取到的照片往往存在噪声干扰等问题影响最终结果准确性,所以要先经过灰度化、去噪、边缘增强等一系列操作改善输入质量。这一步骤能够显著提升下游任务的表现水平[^2]。 ```python import cv2 from PIL import ImageEnhance, ImageFilter def preprocess_image(image_path): img = cv2.imread(image_path) # 转换为灰度图 gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 应用高斯模糊去除噪音 blurred_img = cv2.GaussianBlur(gray_img,(5,5),0) return blurred_img ``` #### 五、选择合适的算法/模型架构 目前主流的方法有两种——传统模板匹配法和基于深度学习的方法。前者依赖于预先设定好的字模数据库来进行对比查找;后者则借助卷积神经网络自动抽取有效表征完成预测工作。鉴于后者具有更强泛化能力和适应范围更广的优势,推荐优先尝试此类解决方案。 #### 六、评估优化 在完成了初步搭建之后,还需要不断调整参数设置并通过交叉验证等方式检验改进措施的有效性直至达到满意的性能标准为止。常见的评价指标有拒识率、误识率等。 #### 七、部署上线 最后当一切就绪后就可以把整个系统迁移到生产环境中去了。考虑到实时响应需求较高的情况建议采用云端服务API接口调用来分担计算压力同时保证用户体验流畅度。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值