金融密码学中的同态加密技术解析
1. 引言
同态加密是一种允许在密文上进行计算而无需先解密数据的技术。早在20世纪70年代,Rivest、Adleman和Dertouzos就开始研究同态加密,他们设想设计出能直接在密文上进行计算的加密方法。2009年,IBM研究员Craig Gentry发明了首个完全同态加密方法,该系统基于格和多线性映射的混合,能对密文进行任意计算,相比早期只能进行少量计算的同态加密技术有了重大突破。
同态加密允许对加密信息进行计算,而无需先解密数据。例如,数据库可以在数据不可访问的情况下响应请求。计算在密文上进行,原始数据(明文)不会被披露,计算输出也是加密的,需解密后才能显示结果。这为数据处理增加了第三层安全保障,补充了数据存储(静态数据保护)和传输(传输中数据保护)时的关键数据保护措施。
同态加密将数据转换为密文,使其能像原始格式一样被检查和使用。它通过复杂的数学过程在不破坏加密的情况下对加密数据进行操作,是一种使应用程序能处理加密数据而非原始数据的加密技术。
在数学中,“同态”指的是将一组数据转换为另一组数据时,保留两组数据中元素之间的联系。同态加密技术保留了数据的结构,因此在数据加密和解密过程中,相似的数学运算能得到相同的结果。与传统加密技术不同,同态加密允许直接对加密数据进行数学运算,提高了第三方处理用户数据的安全性。为了实现对加密数据进行无限次修改的编码技术,人们开发了同态加密。
目前,同态加密领域有大量研究,重要研究领域包括:
1. 完全同态加密(FHE) :专家们致力于创建能对密文进行任意计算的完全同态加密技术,Craig Gentry在2009年提出的完全
订阅专栏 解锁全文
20

被折叠的 条评论
为什么被折叠?



