- 博客(5)
- 收藏
- 关注
原创 了解机器学习5
跟随datawhale学习机器学习,支持向量机确实很难理解,在学习过程中除了基本的框架以外其他都很难,需要多次复习,但整体可以了解为,为样本寻找一个明显的区分边界,在边界四周找几个支持样本,作为支持向量积,总体来说即找一个边界。 笔记如下: ...
2021-12-03 00:27:52 621
原创 了解机器学习4
本次学习神经网络模块。 才疏学浅,看完总觉它内部博大精深,但是我还未上手实践,难以触及,在我眼中机器学习就是侧重于时间的,理论终归是思想,长时间不用思想也会报废。 这回西瓜书从BP算法开始讲解,这是机器学习最基础的一种算法,通过层层迭代递归,通过输入的数据经过一层层隐层,最终达到想要的结果。 其余模型虽然形式上不同,但只要是进行层层迭代递归模拟的模型,或多或少都需要BP算法。 因此BP算法是机器学习重中之重。 其余模型种类繁多,各有优劣,已在笔记: ...
2021-11-28 12:39:01 466
原创 了解机器学习3
跟随datawhale学习机器学习第十天,初次了解决策树,相对于线性回归来说决策树更好理解,它就是不断的进行if…else判断,将一组数据不断的细分,从而将不同的属性与最终的结果建立起联系。 从某种程度上讲,它找出了一组属性对于最终得到的正例来说的权重,也就是最后可以求得想要结果对的能力,即的精度。通过以不同属性作为判断标准先后进行判断,最后得到正确结果的能力有多大。 ...
2021-11-25 22:54:15 713
原创 机器学习进行中2
第三章提高了难度,但却是模型中最基本的线性回归。 在这一章中领我印象最深刻的是利用矩阵计算简化循环操作,从而达到程序求和速度的目的。由于对矩阵运算的不熟练导致我从前并没有想到这一点。 同时,听过本章学习,我还知道了线性回归模型的基本原理:通过一个一元或是多元函数来趋近于一个实验结果。但是这“拟合”的步骤却是复杂多变的,有时候如果无法找到一个直观的函数做到线性拟合,可以考虑将其设为某一函数的变量,构成广义的线性模型。 除此之外,还接触到其它的思想,例如无法将(0,1)分布的阶跃函数作为表示线性函数的函数,因此
2021-11-22 22:13:04 562
原创 接触机器学习第一天
材料:周志华老师的西瓜书 day1-day2 跟着Datawhale组队学习,第一次接触机器学习,干活满满,补足了大学生活的空闲时光。 看到满是理论的西瓜书,我才意识到学工科,理论就是灵魂。 想立即投入实践不愿学习理论,一定会面临缺乏思想而处处碰壁的局面。就像工具没有带齐的木匠去做木工,徒手是薅不出核舟来的。 学习第一、二章,接触机器学习最基本的“工具”,包括机器学习的术语、机器学习的基本思想、学习算法的检验和评估方法……为后面的学习打下基础,笔记如下: 持续打卡,助有缘看到的技术人们事业顺
2021-11-16 22:00:48 698
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人