GEE
文章平均质量分 55
GEE
优惠券已抵扣
余额抵扣
还需支付
¥59.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
普通网友
这个作者很懒,什么都没留下…
展开
-
使用Google Earth Engine和geemap库进行图像集合的映射
通过这种方式,您可以使用geemap库将图像集合映射到Google Earth Engine中的地图上。您可以根据需要修改代码中的图像集合和参数,以满足您的实际需求。接下来,我们加载了一个MODIS NDVI图像集合,并选择了集合中的第一张图像。本文将介绍如何使用geemap库将图像集合映射到Google Earth Engine中的地图上。运行代码后,将会在地图上显示MODIS NDVI图像集合,并将ROI以红色边界的形式叠加在地图上。函数来添加图像集合,并使用一些参数来优化图层的显示效果。原创 2023-09-28 07:02:45 · 111 阅读 · 0 评论 -
Google Earth Engine:计算逐年全球潜在蒸发量(PET)的 ERA 数据
通过获取温度、湿度和降水数据,并使用Penman-Monteith公式,我们可以得到每年的潜在蒸发量。在本文中,我们将使用Google Earth Engine平台和ERA(欧洲再分析气象数据集)数据来计算逐年全球的潜在蒸发量(PET)。接下来,我们需要对ERA数据进行预处理,以获取我们需要的潜在蒸发量数据。有了温度、湿度和降水数据,我们可以使用Penman-Monteith公式来计算每年的潜在蒸发量。最后,我们可以将计算得到的潜在蒸发量数据进行可视化,以便更好地理解全球的水汽蒸发情况。原创 2023-09-28 06:02:02 · 325 阅读 · 0 评论 -
Google Earth Engine: 如何区分不同类型的矢量集合
在GEE中,矢量集合是一种常见的数据类型,它包含了不同类型的地理空间要素,如点、线和多边形。希望本文对您有所帮助!点、线和多边形分别对应于GEE的几何类型中的"Point"、“LineString"和"Polygon”。在Google Earth Engine中,我们可以使用几何类型属性来区分矢量集合中的不同类型要素。通过过滤特定类型的要素,我们可以将矢量集合分成不同的部分,并进行进一步的分析和处理。通过运行上述代码,我们可以在地图上看到分别用红色、蓝色和绿色表示的点、线和多边形要素。原创 2023-09-28 05:24:48 · 84 阅读 · 0 评论 -
使用Google Earth Engine中的`flatten`函数:理解和应用
flatten函数是GEE中一个强大的函数,用于将嵌套的数据结构转换为单层的列表或特征集合。嵌套结构可以是图像集合中的图像列表,也可以是特征集合中的特征列表。flatten其中,是要被转换的嵌套集合,是转换后的单层集合。在本文中,我们学习了如何正确理解和使用Google Earth Engine中的flatten函数。我们了解到flatten函数可以用于展平图像集合和特征集合,将嵌套的结构转换为单层的列表或特征集合。通过正确使用flatten函数,我们可以更方便地处理和分析嵌套的数据结构。以上是关于。原创 2023-09-28 04:11:55 · 228 阅读 · 0 评论 -
Google Earth Engine中不同方法计算坡度的比较案例分析
本文将介绍几种常用的计算坡度的方法,并给出相应的源代码。总结起来,Google Earth Engine提供了多种方法来计算坡度,包括基于地形导数和倾斜度的方法。通过使用GEE的丰富数据和分析工具,我们可以方便地进行地表坡度的计算和可视化分析。需要注意的是,上述示例代码仅展示了坡度计算的基本方法,实际应用中可能需要更多的前期数据处理、后期分析和可视化操作,具体取决于应用的需求和场景。最后,我们将计算得到的结果可视化在地图上,使用了不同的颜色调色板来表示不同坡度的区域。方法一:基于地形导数的坡度计算。原创 2023-09-28 03:13:17 · 226 阅读 · 0 评论 -
地球引擎初探:影像裁剪教程
在本教程中,我们将介绍如何使用Google Earth Engine(GEE)平台进行影像裁剪。影像裁剪是遥感图像处理中常用的操作,它可以帮助我们从原始影像中提取感兴趣的区域或减少数据的大小。通过裁剪影像,我们可以专注于我们感兴趣的区域,并减少计算和存储的负担。通过以上步骤,我们成功地使用GEE平台加载了影像数据,并进行了裁剪操作。你可以根据自己的需求调整感兴趣区域的范围,并使用其他图像处理方法来进一步分析和处理裁剪后的影像数据。通过将裁剪后的影像添加到地图上,我们可以可视化裁剪后的结果。原创 2023-09-28 01:55:54 · 247 阅读 · 0 评论 -
Google Earth Engine MCD12Q v006土地覆盖类型每年L全球m SIN网格数据中国区域下载GEE
Google Earth Engine(GEE)是一个强大的云计算平台,提供了大规模地理空间数据的存储、处理和分析功能。使用Google Earth Engine平台,我们可以方便地下载MCD12Q v006数据集的中国区域数据。通过以上步骤,您可以获取每年的土地覆盖类型数据,并在后续的分析和研究中使用。在上述代码中,我们首先设置了导出参数,指定了导出的区域、分辨率和坐标参考系统。在登录后,点击页面左上角的"代码编辑器"按钮,打开Earth Engine代码编辑器。导入MCD12Q v006数据集。原创 2023-09-28 00:26:59 · 190 阅读 · 0 评论 -
使用Google Earth Engine提取年度流域内的不透水层面积
在本文中,我们将介绍如何使用Google Earth Engine(GEE)平台来提取年度流域内的不透水层面积。使用GEE的图像统计功能,我们可以计算不透水层的面积。这里我们将使用二值化的方法,将不透水层像素值大于0的区域设为1,其他区域设为0,然后计算不透水层的面积。通过执行上述步骤,我们可以在GEE中提取年度流域内的不透水层面积。GEE提供了全球不透水层数据集,我们可以使用该数据集来提取不透水层面积。我们需要将不透水层数据裁剪为流域的范围,以便仅分析流域内的不透水层面积。函数计算不透水层的面积。原创 2023-09-27 18:24:36 · 114 阅读 · 1 评论 -
使用Google Earth Engine过滤矢量集合FeatureCollection并设置属性
根据您的需求,您可以使用不同的过滤器和属性设置函数来实现更复杂的操作。接下来,我们可以定义一个FeatureCollection对象,它包含要过滤和设置属性的矢量数据。现在,modifiedCollection中的每个要素都有了一个新的’population’属性,并且其值为1000000。现在我们有了一个包含三个点要素的FeatureCollection,每个要素都有一个’name’属性。现在,filteredCollection中只包含名称为’San Francisco’的点要素。原创 2023-09-27 17:48:06 · 78 阅读 · 1 评论 -
Google Earth Engine:使用Whittaker平滑算法的案例分析
通过导入遥感影像数据,确定缺失值位置,并应用Whittaker平滑算法,我们可以有效地填充缺失值,获得完整的影像数据。在Google Earth Engine(GEE)平台上,我们可以利用Whittaker平滑算法来处理遥感影像数据,并实现空间插值。我们假设有一幅遥感影像数据,其中包含一些缺失值。我们的目标是使用Whittaker平滑算法填充这些缺失值,以获得完整的影像数据。通过上述代码,我们可以在GEE中使用Whittaker平滑算法对遥感影像数据进行空间插值,从而填充缺失值。需要替换为实际的波段名称。原创 2023-09-27 15:49:51 · 217 阅读 · 1 评论 -
Google Earth Engine:基于单点坐标创建格网
通过在GEE中利用单点坐标和一些计算,我们可以创建一个具有特定大小和分辨率的格网,并将其用于进一步的分析和可视化。首先,我们导入GEE库,然后定义单点坐标和格网参数,接着使用这些参数创建格网,最后可视化格网以进行进一步的分析。注意:在运行上述代码之前,请确保你已经正确设置了GEE的环境,并且已经定义了正确的单点坐标和格网参数。利用上述定义的单点坐标和格网参数,我们可以使用GEE的功能来创建格网。接下来,我们需要定义用于创建格网的参数,例如格网大小和分辨率。首先,我们需要在GEE中导入所需的库。原创 2023-09-26 04:07:24 · 152 阅读 · 0 评论 -
使用Google Earth Engine提取年青海湖面积的示例和源代码
然后,我们将提取的水体掩膜乘以像素面积,并将结果除以1,000,000以获得以平方千米为单位的面积。计算水体面积是一项重要的环境监测任务,特别是对于湖泊和水库等水体。Google Earth Engine是一个强大的云计算平台,可以访问全球范围内的卫星图像和地理空间数据,并提供了大规模数据处理和分析的功能。通过使用Google Earth Engine平台,我们可以方便地提取水体面积,并进行大规模的遥感数据处理和分析。同时,GEE提供了丰富的遥感数据集和强大的计算能力,使得水体面积提取变得更加高效和便捷。原创 2023-09-26 02:26:25 · 233 阅读 · 0 评论 -
使用Google Earth Engine分析植被对降雨的拦截量
在本文中,我们将介绍如何使用GEE计算植被拦截降雨量的案例,并提供相应的源代码。通过计算植被拦截的降雨量并进行可视化,我们可以更好地理解植被在水循环中的作用,并为水资源管理和生态系统保护提供有价值的信息。通过以上步骤,我们可以使用Google Earth Engine计算植被对降雨的拦截量,并通过可视化结果进行进一步的分析。在上述代码中,我们首先将降雨图像与植被指数图像相乘,得到植被拦截的降雨量。如果需要将结果转换为毫米,我们可以将拦截降雨量乘以一个适当的缩放因子,例如0.1,将其转换为毫米。原创 2023-09-26 01:23:13 · 63 阅读 · 0 评论 -
使用Google Earth Engine下载MODIS合成日间NDVI逐年影像循环
在上述代码中,我们首先设置了感兴趣区域(region),可以通过提供最小经度(xmin)、最小纬度(ymin)、最大经度(xmax)和最大纬度(ymax)定义该区域。最后,我们通过指定输出参数(description、scale、region、folder和maxPixels)来设置导出的相关信息,并通过启动下载任务(downloadTask.start())来下载影像。通过使用Google Earth Engine的强大功能,我们可以轻松访问和处理遥感数据,从而获得有关植被生长和变化的有价值信息。原创 2023-09-26 01:16:28 · 184 阅读 · 0 评论 -
使用 PyQGIS 在 Google Earth Engine 上实现测地线缓冲区
PyQGIS 是一个强大的 Python 库,它允许我们在 Python 环境中使用 QGIS 的功能。测地线缓冲区是在地理空间分析中常用的一种技术,它可以用于计算沿着地球曲面的路径的缓冲区。在这个函数中,我们首先将 QGIS 的几何对象转换为 GEE 的几何对象,然后使用 GEE 的缓冲区分析函数创建测地线缓冲区。然后,我们创建一个新的矢量图层,并将缓冲区几何对象添加到图层中。通过运行上述代码,我们可以在 QGIS 中看到生成的测地线缓冲区。在这个示例中,我们创建了一个点几何对象,并使用之前定义的。原创 2023-09-25 23:37:48 · 110 阅读 · 1 评论 -
Google Earth Engine MODIS 影像LST 地表温度随时间变化的趋势案例分析
我们将展示如何使用GEE进行数据访问、图像处理和可视化,并提供相应的源代码。通过运行上述代码,我们可以在GEE平台上获得地表温度随时间变化的趋势图,并可视化在地图上。通过这个案例,我们可以利用GEE强大的数据处理和可视化功能,对遥感数据进行分析,并了解地表温度在不同地区和时间上的变化情况。请注意,为了运行上述代码,您需要在GEE平台上具有相应的数据访问权限,并且需要根据自己的需求修改代码中的参数和变量。接下来,我们将计算每个像素点在时间序列上的平均地表温度,并绘制时间序列图。上述代码中,我们首先使用。原创 2023-09-25 22:10:02 · 125 阅读 · 1 评论 -
全球油棕中值分布数据集——揭示全球油棕种植分布的数据洞察
使用示例代码中的方法,研究人员和决策者可以更好地利用全球油棕中值分布数据集,为环境保护和可持续发展提供支持和指导。全球油棕中值分布数据集的重要性在于揭示了全球范围内油棕种植的分布情况。该数据集提供了关于油棕种植面积和分布的详细信息,为研究人员、决策者和环境保护组织提供了重要的洞察力。上述示例代码首先使用pandas库读取全球油棕中值分布数据集,然后根据国家/地区统计了油棕种植面积,并绘制了前十个国家/地区的油棕种植面积柱状图。接着,代码统计了每个大洲的油棕种植面积,并绘制了各大洲的油棕种植面积饼图。原创 2023-09-25 08:07:27 · 107 阅读 · 1 评论 -
使用Google Earth Engine平台估算全球森林生物量
通过获取适当的遥感数据、进行数据预处理、选择合适的算法和进行结果可视化,可以得到全球范围内的森林生物量估算结果。使用GEE平台进行全球森林生物量估算,可以为森林管理、环境保护和气候变化研究等领域提供重要的数据支持。全球森林生物量是评估森林健康和碳储量的重要指标。通过利用遥感数据和地理信息系统(GIS)技术,可以使用Google Earth Engine(GEE)平台实现全球范围内的森林生物量估算。通过GEE平台的可视化功能,可以对全球范围内的森林生物量分布进行直观的观察和分析。原创 2023-09-25 05:51:21 · 443 阅读 · 1 评论 -
如何在Google Earth Engine中为图表添加注释?
在Google Earth Engine (GEE) 中,注释图表是一种有用的方式,可以帮助我们更好地理解和解释数据。通过添加注释,我们可以标识关键特征、趋势或事件,并提供相关的解释。在本文中,我将展示如何在GEE中为图表添加注释,并提供相应的源代码。首先,我们需要创建一个图表对象,然后在图表上添加注释。运行上述代码后,你将在地图上看到一个包含折线图和注释的面板。通过这种方式,你可以在GEE中为图表添加注释。,并设置了图表的一些属性,如标题、坐标轴标签等。,将图表和注释添加到面板中,并使用。原创 2023-09-25 04:27:30 · 71 阅读 · 1 评论 -
Google Earth Engine案例:土地分类数据的正确加载
通过使用GEE提供的工具和函数,我们可以轻松地处理和探索大规模的地球观测数据。GEE提供了许多全球范围内的土地分类数据集,如USGS的GlobeLand30和MODIS的MCD12Q1。在这个案例中,我们将探讨如何正确加载土地分类数据,并使用GEE提供的工具进行分析和可视化。通过使用上述代码,我们成功加载了土地分类数据集,并进行了基本的分析和可视化。您可以根据自己的需求进一步探索GEE提供的功能,并根据需要进行修改和定制。在上述代码中,我们选择了最新的图像,并使用预定义的调色板设置了可视化参数。原创 2023-09-25 03:52:39 · 154 阅读 · 1 评论 -
使用QGIS和GEE进行地理信息系统(GIS)分析和处理
QGIS(Quantum GIS)是一款开源的地理信息系统软件,而GEE(Google Earth Engine)是一个强大的云平台,用于存储、处理和分析地理空间数据。结合使用QGIS和GEE,可以进行各种地理信息处理和分析任务。在安装完Earth Engine Python API后,您需要连接到GEE服务器。在配置GEE之前,您需要安装Earth Engine Python API。在QGIS中添加GEE图层,可以使用GEE插件提供的功能。安装完GEE插件后,需要进行配置以使用GEE的功能。原创 2023-09-25 02:26:57 · 331 阅读 · 0 评论 -
使用Google Earth Engine降低图像分辨率至30米
在本教程中,我们将探讨如何使用Google Earth Engine(GEE)平台降低遥感图像的分辨率至30米。通过执行以上代码,您将在Google Earth Engine中看到降低分辨率至30米的图像。首先,我们需要导入要降低分辨率的图像。该函数需要三个参数:降低分辨率的方法、降低的比例和降低分辨率的投影。降低分辨率后,我们需要将图像重新投影到30米的分辨率。通过执行上述代码,您将在GEE地图中看到降低分辨率至30米的图像。参数用于指定图像的投影坐标系,这里我们使用原始图像的投影。原创 2023-09-25 00:45:51 · 158 阅读 · 0 评论 -
使用GEE进行DEM分析和分层重分类
在地表分析和地理建模中,对DEM进行分析和处理是非常重要的。通过上述步骤,我们可以使用GEE对DEM数据进行分析和分层重分类。通过计算斜坡和坡向,我们可以获得地形的相关信息,并根据阈值对地形进行分类。最后,我们可以将分类结果可视化并导出。此外,GEE平台提供了丰富的工具和函数,可以进行更多高级的DEM分析和处理,读者可以根据自己的需求进行进一步的探索和研究。接下来,我们可以选择一个感兴趣的地区,并加载相应的DEM数据。接下来,我们可以根据斜坡和坡向对地形进行分类。现在,我们可以对DEM数据进行分析和处理。原创 2023-09-25 00:04:58 · 256 阅读 · 0 评论 -
使用Google Earth Engine下载中国区域的逐年清华全球不透水层数据
本文将介绍如何使用Google Earth Engine (GEE) 平台下载中国区域的逐年清华全球不透水层数据,并提供相应的源代码。在上述代码中,我们首先定义了中国区域的边界,可以将其替换为您自己的边界数据集。总结起来,本文介绍了如何使用Google Earth Engine 平台下载中国区域的逐年清华全球不透水层数据。通过使用Google Earth Engine 平台,我们可以方便地访问和处理大规模的地理空间数据,为环境和土地管理等领域的研究和决策提供支持。并按照指示创建一个账号。原创 2023-09-24 22:07:26 · 120 阅读 · 1 评论 -
Google Earth Engine Landsat 年生态遥感指数计算方法
然后,我们加载了Landsat 8卫星的表面反射率数据,并根据时间范围和地理范围进行了筛选。接下来,我们选择了计算NDVI和NDWI所需的波段,并通过normalizedDifference函数计算了相应的指标。RESI指数的计算方法涉及多个遥感波段和指标,但常用的方法是基于归一化植被指数(Normalized Difference Vegetation Index,简称NDVI)和归一化差异水体指数(Normalized Difference Water Index,简称NDWI)。原创 2023-09-24 21:17:22 · 744 阅读 · 1 评论 -
Google Earth Engine 简单的时序动画界面设计与实现
为了运行时序动画界面,我们需要在Google Earth Engine的代码编辑器中创建一个新的脚本,并将上述HTML和JavaScript代码复制到编辑器中的相应部分。在本文中,我们将介绍如何使用Google Earth Engine(GEE)创建一个简单的时序动画界面,并提供相应的代码示例。在本文中,我们将介绍如何使用Google Earth Engine(GEE)创建一个简单的时序动画界面,并提供相应的代码示例。首先,我们需要设计一个简单直观的界面,用于控制时序动画的播放和显示。然后,启动动画播放。原创 2023-09-24 19:46:49 · 55 阅读 · 1 评论 -
合并影像集合:使用GEE Python中的aggregate_array、arrayProject和arrayFlatten
Google Earth Engine(GEE)是一个功能强大的云平台,用于处理和分析地理空间数据。在GEE中,我们可以使用多个影像集合,每个集合都包含一系列影像。有时,我们需要将这些影像集合合并为单个影像,以便进行进一步的分析和处理。在本文中,我们将介绍如何使用GEE Python API中的aggregate_array、arrayProject和arrayFlatten方法将影像集合转化为单个影像。通过合并影像集合,我们可以更方便地进行后续的操作,并获得更全面的分析结果。是用于显示影像的可视化参数,原创 2023-09-24 18:44:52 · 262 阅读 · 1 评论 -
自定义地图颜色 - Google Earth Engine
通过在GEE中使用调色板,您可以为地图数据选择和应用自定义颜色方案。自定义调色板定义了不同数据值对应的颜色,让您能够以自己喜欢的方式呈现和解释地图数据。调色板是一个包含颜色代码的列表,用于将不同的数据值映射到相应的颜色。运行上述代码后,您将在地图上看到两个图层:原始影像和应用了自定义颜色方案的影像。自定义颜色方案将根据遥感影像的像素值将其映射到相应的颜色,使您能够更好地理解和解释数据。运行上述代码后,您将在地图上看到一个应用了自定义颜色方案的图层,其中不同的NDVI值被映射到相应的颜色。原创 2023-09-24 16:50:23 · 394 阅读 · 1 评论 -
Google Earth Engine 年度 RSEI 分析:以黄河流域为例
在本文中,我们将使用 Google Earth Engine 平台进行年度 RSEI(Risk-Screening Environmental Indicators)分析,并以中国的黄河流域为研究对象。RSEI 是一种用于评估区域环境风险的方法,通过整合环境污染和人口暴露数据,可以识别出潜在的环境风险热点区域。最后,将环境风险指数和人口暴露指数相乘,得到 RSEI 指数。接下来,我们将计算 RSEI 指数。RSEI 指数的计算涉及多个步骤,包括转换影像数据、计算环境风险指数和人口暴露指数。原创 2023-09-24 15:53:37 · 134 阅读 · 1 评论 -
使用Google Earth Engine生成30米分辨率的叶面积指数图
叶面积指数是一个描述植被叶片覆盖程度的重要指标,通常用于研究植被的生长状态和生态系统的功能。LAI的值越高,表示植被叶片的覆盖程度越大,植被的生长状况也越好。最后,我们选择最新的LAI影像,并将其可视化在地图上。在可视化过程中,我们设置了LAI值的最小和最大范围,以及一个调色板来表示不同LAI值的颜色。在函数中,我们使用植被指数算法计算LAI,并将计算得到的LAI值作为新的波段添加到影像中。然后,我们将LAI计算函数应用到影像集合中的每个影像上,得到包含LAI波段的新影像集合。接下来,我们定义了一个函数。原创 2023-09-24 14:34:25 · 354 阅读 · 1 评论 -
计算影像相似度:使用 RMSE 指标在 GEE 平台上比较两幅影像
影像相似度是遥感图像处理和分析中一个重要的度量指标,它可以帮助我们判断两幅影像之间的差异程度。本文将介绍如何使用 GEE 平台计算两幅影像之间的 RMSE,并提供相应的源代码。通过以上代码,我们可以在 GEE 平台上计算两幅影像之间的 RMSE,并获取相应的相似度指标。根据 RMSE 的值,我们可以判断两幅影像之间的差异程度,进而进行影像分析和比较。需要注意的是,以上代码只是一个简单的示例,实际应用中可能需要考虑更多的因素和步骤。计算完成后,我们可以打印输出 RMSE 的值,以便进行进一步的分析和比较。原创 2023-09-24 13:10:00 · 252 阅读 · 1 评论 -
Google Earth Engine(GEE)中存储公共函数并在新程序中使用NDVI
在上面的代码中,我们首先定义了一个名为"ndviCalculator"的函数,它接受一个图像作为输入,并返回包含NDVI波段的图像。在Google Earth Engine(GEE)中,我们可以使用自定义函数来存储常用的代码片段,并在需要时在新的程序中调用这些函数。这样可以提高代码的可重用性和整体效率。在本文中,我们将以计算归一化植被指数(NDVI)为例介绍如何在GEE中存储公共函数并在新的程序中使用。通过将公共函数存储在GEE中,我们可以在任何新的程序中轻松地调用这些函数,而不必重复编写相同的代码。原创 2023-09-24 11:28:07 · 105 阅读 · 0 评论 -
使用Google Earth Engine查询数据集信息和使用
在本文中,我们将介绍如何正确地查询GEE数据集的信息,并展示如何使用这些数据集进行分析。通过查询数据集信息,您可以了解数据集的属性和波段信息。然后,您可以使用这些数据集进行各种分析和可视化操作,以满足您的研究和应用需求。替换为您要使用的实际数据集的ID。另外,您还需要定义一个区域感兴趣(ROI),指定一个时间范围,并选择一个特定的波段进行可视化。一旦您了解了数据集的信息,就可以使用它们进行分析和可视化。运行代码后,您将获得有关数据集的基本信息,包括名称、ID、描述和波段信息。在上面的代码中,您需要将。原创 2023-09-24 10:41:44 · 168 阅读 · 0 评论 -
Google Earth Engine教程:NDVI差异分析和图像采集迭代分析
通过迭代采集多个时间点的NDVI图像,并将它们组合成一个图像集合,可以观察植被生长的全面情况。NDVI的计算公式为:(NIR - Red) / (NIR + Red),其中NIR是近红外波段的反射率,Red是红色波段的反射率。NDVI差异分析是比较不同时间或空间的NDVI图像,以了解植被生长的变化。图像采集迭代分析则是在给定地区或区域内,通过迭代采集多个NDVI图像,以获得更全面的植被生长信息。运行以上代码后,你将得到一个包含多个时间点的NDVI图像集合,并且可以生成一个视频来观察植被生长的变化。原创 2023-09-24 08:14:35 · 118 阅读 · 0 评论 -
将多个单波段影像合成为一个多波段影像(使用Google Earth Engine)
在遥感图像处理中,将多个单波段影像合成为一个多波段影像是一项常见的任务。通过将不同波段的信息融合到一个图像中,我们可以获得更丰富的遥感数据,用于各种应用领域,如土地覆盖分类、环境监测和资源管理等。在本文中,我们将介绍如何使用Google Earth Engine(GEE)平台将多个单波段影像合成为一个多波段影像,并提供相应的源代码。通过以上步骤,我们可以使用GEE平台将多个单波段影像合成为一个多波段影像,并进行可视化和导出操作。在上面的代码中,我们首先导入了三个单波段影像,分别命名为。(导出文件的描述)、原创 2023-09-24 06:27:33 · 409 阅读 · 0 评论 -
MSE的评估和计算 GEE
而广义估计方程(Generalized Estimating Equations,简称GEE)是一种常用的统计方法,用于处理具有相关性数据的回归分析。而GEE是一种处理相关性数据的回归分析方法,它通过建立广义线性模型来估计变量之间的关系,并考虑到数据之间的相关性。通过使用适当的工具和方法,我们可以准确评估模型的性能并进行相关性数据的回归分析。GEE是一种用于处理相关性数据的回归分析方法,它通过建立一个广义线性模型来估计变量之间的关系,并考虑到数据之间的相关性。首先,我们来了解MSE的计算方法。原创 2023-09-24 05:55:15 · 1498 阅读 · 0 评论 -
地球引擎高级教程:将地图展示界面分割为多个界面
在地球引擎(Google Earth Engine)中,我们可以通过将地图展示界面分割为多个界面,以实现更灵活和定制化的数据展示效果。希望本教程能够帮助您理解如何将地图展示界面分割为多个界面,以实现更灵活和定制化的数据展示效果。此外,您还可以在不同的分割界面上显示不同的图层或数据。例如,您可以在上面的界面中显示遥感影像,而在下面的界面中显示矢量数据。接下来,我们可以创建一个地图展示界面,并将其分割为多个界面。您可以根据需要调整分割面板的参数来满足您的需求。,以实现左右排列的分割效果。原创 2023-09-24 04:01:48 · 56 阅读 · 0 评论 -
使用Google Earth Engine(GEE)的evaluate函数实现批量下载研究区域内的所有单张影像
综上所述,通过使用GEE的evaluate函数,我们可以方便地实现批量下载研究区域内的所有单张影像。首先,我们需要定义我们的研究区域。在上面的代码中,我们选择了LANDSAT 8的表面反射率(TOA)影像集合,并使用filterBounds和filterDate函数分别根据研究区域和日期范围对影像进行了筛选。最后,我们可以使用所得到的影像数组来进行进一步的处理,如保存影像到本地或进行其他分析。在上面的代码中,imageCollection.evaluate()返回了研究区域内的所有单张影像的图像数组。原创 2023-09-24 01:13:07 · 364 阅读 · 0 评论 -
使用Google Earth Engine将单景影像导出到Google Drive
在本文中,我们将探讨如何使用Google Earth Engine将单景影像导出到Google Drive中。你只需要选择合适的影像,指定导出参数,并启动导出任务即可。一旦导出任务启动,Google Earth Engine将开始处理影像并将其导出到指定的Google Drive文件夹中。然后,我们指定了导出的分辨率为30米,并且选择了GeoTIFF格式作为导出文件的格式。方法创建一个导出任务,并指定了任务的相关参数,包括影像、描述、导出文件夹、分辨率、区域和文件格式等。在上述代码中,我们首先使用。原创 2023-09-23 22:55:02 · 128 阅读 · 1 评论 -
在Google Earth Engine中根据点坐标加载研究区域
然后,我们定义了一个点的几何图形,使用经度(lon)和纬度(lat)来指定点的坐标。接下来,我们选择了一个数据集(这里使用的是Landsat 8数据集),并使用。如果你想在Google Earth Engine中加载自己的研究区域,可以使用点的坐标来定义该区域。通过以上的代码示例,你可以根据点的坐标加载自己的研究区域,并对加载的图像进行进一步的处理和分析。它提供了丰富的遥感数据集和一套强大的编程接口,使研究人员能够对地球观测数据进行高效的分析和可视化。接下来,我们可以对加载的图像进行进一步的处理和分析。原创 2023-09-23 21:55:20 · 83 阅读 · 1 评论