均方误差(Mean Squared Error,简称MSE)是一种常用的评估指标,用于衡量预测结果与真实值之间的差异程度。在统计学和机器学习领域,MSE被广泛应用于回归问题中。而广义估计方程(Generalized Estimating Equations,简称GEE)是一种常用的统计方法,用于处理具有相关性数据的回归分析。
首先,我们来了解MSE的计算方法。MSE的计算公式如下:
MSE = (1 / n) * Σ(yi - ŷi)²
其中,n表示样本数量,yi表示真实值,ŷi表示预测值。MSE的计算步骤如下:
- 计算每个样本的预测误差:ei = yi - ŷi
- 将每个预测误差的平方累加:Σ(ei²)
- 将累加值除以样本数量:(1 / n) * Σ(ei²)
接下来,我们将介绍如何使用Python计算MSE。假设我们有一组真实值和对应的预测值,可以按照以下代码进行计算:
import numpy as np
def