计算机毕设项目r8u38461_042+python基于深度学习的短视频内容理解与推荐系统,计算机毕业生可参考,免费资源下载

Python深度学习短视频理解与推荐系统

python基于深度学习的短视频内容理解与推荐系统

摘  要

随着现代短视频的快速发展,短视频内容理解与推荐系统已成为人们业余生活的需求。该平台采用Python技术和django搭建系统框架,后台使用MySQL数据库进行信息管理;通过用户管理、短视频管理、交流论坛、系统管理、个人资料等功能,为短视频内容理解与推荐系统管理提供了一个全面的短视频管理解决方案。短视频内容理解与推荐系统正在成为短视频界的一股革命力量。它通过分析用户的短视频品味,为用户提供个性化的视频推荐,引领我们进入一个全新的短视频世界。它不仅改变了我们的短视频消费方式,还为短视频产业带来了无限的可能性。

关键词:短视频;Python;django框架;MySQL

Abstract

With the rapid development of modern short video, short video content understanding and recommendation system has become the demand of people's spare time. The platform uses Python technology and Django to build a system framework, backstage using MySQL database for information management; through user management, short video management, communication forums, system management, personal data and other functions, it provides a comprehensive short video management solution for short video content understanding and recommendation system management. Short video content understanding and recommendation system is becoming a revolutionary force in short video field. It leads us into a brand new short video world by analyzing users' short video tastes and providing personalized video recommendations. It has not only changed our short video consumption, but also for the short video industry has brought infinite possibilities.

Key words: short video; Python; django framework; MySQL

目  录

第一章 概述

1.1 研究背景与意义

1.2国内外发展现状

1.3 研究内容

1.4本文的结构

第二章 开发工具及技术介绍

2.1 Python语言

2.2 Django框架

2.3 MySQL数据库

2.4 协同过滤算法

2.5 vue介绍

2.6 B/S架构

2.7 Hadoop介绍

2.8 Scrapy介绍

第三章 系统分析

3.1功能需求分析

3.2系统可行性分析

3.2.1技术可行性

3.2.2 经济可行性

3.2.3社会可行性

3.3 系统用例分析

3.4系统流程分析

3.4.1 登录流程图

3.4.2 添加新用户流程图

第四章 系统概要设计

4.1系统设计原理

4.2功能模块设计

4.3 数据库设计

4.3.1数据库设计原则

4.3.2数据库E-R图设计

4.3.3数据库表结构设计

第五章 系统功能实现

5.1系统前台功能实现

5.1.1首页功能实现

5.1.2个人中心

5.2管理员功能实现

第六章 系统测试

6.1系统测试的目的

6.2软件测试过程

6.3系统测试用例

结    论

致  谢

参考文献

   

第一章 概述

1.1 研究背景与意义

短视频内容理解与推荐系统是针对短视频平台上海量视频内容进行理解、分类、推荐和个性化服务的一种智能化系统。在当今数字娱乐时代,短视频已成为人们日常生活中不可或缺的一部分,而短视频内容理解与推荐系统的研究和应用对于优化用户体验、提高平台活跃度具有重要的背景和意义。了解其研究背景。随着移动互联网的普及和智能手机的普及,短视频平台如今已经成为人们获取信息、娱乐放松的重要途径。然而,面对海量的视频内容,用户往往面临信息过载和选择困难的问题。传统的人工推荐方式已经无法满足用户个性化需求,因此需要研发更加智能化、精准的短视频内容理解与推荐系统来应对挑战。探讨其意义所在。短视频内容理解与推荐系统的研究和应用对于短视频平台、用户和内容创作者都具有重要意义。首先,对于用户而言,该系统可以根据用户的兴趣爱好、观看历史等数据,为其推荐符合个性化需求的视频内容,提高用户体验和满意度。其次,对于短视频平台而言,该系统可以帮助其提高内容的精准度和匹配度,增加用户黏性和活跃度,促进平台的发展和壮大。再者,对于内容创作者而言,系统的推荐算法可以帮助其更好地了解受众需求,制作更加受欢迎的视频内容,提高曝光和影响力。

短视频内容理解与推荐系统的研究和应用对于短视频行业和相关利益相关者来说具有重要的意义。通过深入探讨该系统的研究背景和意义,可以更好地指导相关研究和实践,推动短视频行业向着智能化、个性化的方向发展,实现行业的可持续发展和社会效益的最大化。

1.2国内外发展现状

随着移动互联网的快速发展,短视频平台成为了人们获取信息和娱乐的重要渠道。为了提供更好的用户体验,短视频平台开始引入内容理解与推荐系统,通过分析用户的兴趣和行为,为其推荐个性化的视频内容。以下将从内容理解技术、推荐算法、用户反馈与评估以及未来发展趋势等方面介绍短视频内容理解与推荐系统的国内外发展现状。

在内容理解技术方面,国内外的研究者们致力于开发能够理解短视频内容的技术。他们利用计算机视觉、自然语言处理等技术手段,对视频中的图像、音频和文本进行分析和理解。例如,通过图像识别技术,系统可以识别视频中的物体、场景和人物;通过语义分析技术,系统可以理解视频中的文字和语音内容。这些内容理解技术为后续的推荐算法提供了基础数据和特征。在推荐算法方面,国内外的研究者们提出了多种用于短视频推荐的算法模型。传统的推荐算法如协同过滤、基于内容的推荐等仍然被广泛应用,但也面临着冷启动问题和数据稀疏性等挑战。为了解决这些问题,研究者们开始探索深度学习和强化学习等新的推荐算法。例如,利用深度学习技术,系统可以从海量的用户行为数据中学习用户的兴趣和偏好,提供更加准确的推荐结果。在用户反馈与评估方面,短视频平台注重用户的反馈和评估,以提高推荐系统的效果和用户满意度。通过用户的点赞、评论、分享等行为,系统可以获取用户对视频内容的喜好和评价。同时,短视频平台还会进行A/B测试和用户调查等方式,收集用户的反馈意见和建议,优化推荐算法和界面设计。在未来发展趋势方面,短视频内容理解与推荐系统将继续向着个性化、多样化和实时化的方向发展。随着用户数量的增加和数据规模的扩大,短视频平台将能够更好地理解用户的兴趣和需求,提供更加精准和多样化的推荐内容。同时,结合增强现实、虚拟现实等新兴技术,短视频平台还可以为用户提供更加沉浸式和个性化的观看体验。短视频内容理解与推荐系统在国内外都得到了广泛的关注和研究。目前的研究主要集中在内容理解技术、推荐算法、用户反馈与评估以及未来发展趋势等方面。未来,短视频内容理解与推荐系统将继续发展,为用户提供更加个性化、多样化和实时化的视频内容推荐服务。

1.3 研究内容

在系统开发过程中我们选择了Python开发语言,并引入了基于用户相似度的协同过滤算法,用于提供个性化的推荐功能。系统通过echarts技术展示可视化大屏,将数据进行展示在看板上。此外,我们还采用了Python开发的Scrapy爬虫技术,用于高效地收集网络数据。并采用了Django框架,它强大的自动化功能大大提高了开发效率。在数据存储和操作方面,我们选择了MySQL数据库。前端采用了HTML、CSS、JavaScript和Vue.js,实现了丰富的用户界面和良好的交互体验。在开发工具的选择上,选用了PyCharm,这是一款功能强大且易于使用的Python开发工具,以及Navicat,它为数据库操作提供了简单易用的界面,帮助开发者高效地进行数据库管理。系统共分为管理员和用户两个角色,主要包括用户管理、短视频管理、交流论坛、系统管理、个人资料等功能;

1.4本文的结构

本论文分为六个章节。

第一章,绪论,其包含课题背景及意义,现国内外的发展现状,本课题要研究的内容,所使用开发工具的描述等信息。

第二章,主要介绍了系统的开发技术。

第三章,讲述功能需求分析,再讲述系统可行性分析和流程图的设计。

第四章,描述了系统设计原理,功能模块设计和数据库设计。

第五章,详细讲述每个界面的正确操作步骤。

第六章,该章讲述了测试的目的以及测试过程及用例。

最后对论文进行总结,包括致谢和参考文献等内容。

第二章 开发工具及技术介绍

此次管理系统的关键技术和架构由B/S结构、Python技术和MySQL数据库,是本系统的关键开发技术,对系统的整体、数据库、功能模块、系统页面以及系统程序等设计进行了详细的研究与规划。

2.1 Python语言

Python是一种高级编程语言,由Guido van Rossum于1989年创建。它的设计哲学强调代码的可读性和简洁性,使得Python成为了许多初学者和专业开发者的首选语言。Python支持多种编程范式,如面向对象编程、函数式编程和过程式编程。Python可以应用于各种领域,如Web开发、数据分析、人工智能、机器学习等。此外,Python还具有良好的跨平台兼容性,可以在Windows、macOS和Linux系统上运行。总之,Python是一种功能强大、易于学习和使用的编程语言,适用于各种应用场景。

2.2 Django框架

Django是一个基于Python的高级Web框架,它鼓励快速开发和干净、实用的设计。Django遵循MVC(模型-视图-控制器)设计模式,可以方便地实现数据库操作、表单处理、用户认证等功能。Django还提供了强大的ORM(对象关系映射)功能,使得开发者可以用面向对象的方式操作数据库。此外,Django内置了URL分发器、模板引擎等组件,简化了Web应用的开发流程。Django还具有丰富的第三方库和插件,可以满足各种需求。总之,Django是一个功能强大、易于上手的Web开发框架,适用于构建各种规模的Web应用。

2.3 MySQL数据库

MySQL是Oracle公司旗下的一个开源的关系型数据库管理系统(Relational Database Management System, RDBMS)。 MySQL支持使用多线程,充分利用了CPU的计算资源,可以选择InnoDB, MyISAM和MEMORY等作为存储引擎,提供了丰富的数据库管理工具。在索引功能的加持下,其具有非常高的查询效率,并支持主从、多节点集群等高可用部署模式。MySQL凭借其低廉的成本、可靠的数据库服务和出色的性能,目前己经成为绝大多数企业在进行项目开发时的首选关系型数据库。

2.4 协同过滤算法

协同过滤是一种常见的推荐算法,主要通过分析用户的行为数据,发现用户的兴趣点,并据此进行推荐。简单来说,如果两个用户在过去对同一类商品的评分或行为相似,那么他们对其他类似商品的评分或行为也可能会相似。协同过滤就是基于这样的假设,通过收集用户的历史行为数据,找出与目标用户兴趣相似的其他用户,然后把这些相似用户喜欢的、而目标用户未曾接触过的商品推荐给目标用户。这种算法在电商、新闻、音乐、电影等领域的个性化推荐中得到了广泛应用。

2.5 vue介绍

Vue是一种用于构建用户界面的渐进式JavaScript框架。它被设计为易于上手,灵活且轻量级,能够适应从小型项目到大型企业应用程序的需求。Vue的核心是一个响应式的数据绑定系统和一个组件系统。响应式数据绑定允许创建交互式的用户界面,而组件系统则使得代码组织和复用变得简单。Vue也提供了一套完整的前端开发工具,包括编译器、热重载、开发服务器等,以支持更高效的开发流程。此外,Vue的生态系统还包括Vuex(状态管理库)和Vue Router(路由管理器),这些工具可以帮助开发者构建复杂的单页应用程序。总的来说,Vue是一个功能强大、易于使用且高效的前端框架,适用于各种规模的项目。

2.6 B/S架构

B/S结构确实是指系统客户端与服务器分离,客户端通过浏览器访问服务端进行操作。相比于C/S结构,B/S结构具有更多的优势:主要包括对跨平台性、低维护成本、高安全性、简化部署和更新和方便远程访问五大优势;总的来说,B/S结构在系统搭建中广泛应用,摒弃了C/S结构客户端服务端不分离的缺点,具有跨平台性、低维护成本、高安全性、简化部署和更新以及方便远程访问等优势。

2.7 Hadoop介绍

Hadoop是一个由Apache基金会维护的开源框架,它允许分布式处理大数据集在计算集群中的大规模数据。它的核心设计哲学是将应用程序带到数据所在的位置,而不是将大量数据传输到应用程序所在的服务器。Hadoop主要由两个组件组成:Hadoop Distributed File System(HDFS)和MapReduce。HDFS提供了高度可靠、高吞吐量的数据存储解决方案,而MapReduce则是一个编程模型,用于处理这些大量数据。Hadoop的优势在于其可扩展性、经济性和灵活性,使其成为大数据分析的首选工具。

2.8 Scrapy介绍

Scrapy是一个开源且强大的JAVA爬虫框架,用于快速高效地从网站和互联网上提取结构化数据。它可用于广泛的目的,从数据挖掘到监控和自动化测试。Scrapy的核心是其引擎,它负责调度、下载、解析和处理请求以及项目管道的清理和持久化。Scrapy能够处理登录、cookies、session、用户代理切换等一系列复杂任务。其优势在于可扩展性、中间件支持、内建的下载器和爬虫管理等。通过使用Twisted异步网络库和丰富的API,Scrapy可以高效地处理并发请求,并且具有很好的性能表现。

第三章 系统分析

3.1功能需求分析

需求分析的首要任务是了解用户的需求,包括定性和定量两个方面。定性分析主要通过与用户交流来深入了解他们的基本需求和习惯要求。定量分析则通过收集用户的反馈和描述来发现潜在的用户需求。一旦获取到用户需求,就需要将其设计为系统的功能模块。在及时分析和跟进需求的同时,还需要进行数据分析以便总结和撰写需求报告。需求报告应包含完整的需求描述、功能需求和模型等开发所需的资料。

在需求分析中,用户需求是非常重要的,可以通过各种途径和用户交流来获取用户对系统功能的需求。通过整理和分类这些需求,并分析其背后的原因,可以得出实现这些需求的可能性。短视频内容理解与推荐系统功能是由多个可测试的功能模块组成,这些功能模块的设计和实现能够满足用户的需求并提升系统的完善程度。

3.2系统可行性分析

3.2.1技术可行性

该系统使用Python技术开发,MySQL数据库同Django框架联合开发并实现。对于以上描述的技术,在当代都是较为成熟的技术和平台,虽然它们都有自已的体系,但在程序员的眼里,它们的配合度是很高的,网上的相关博客中每个创建项目的帖子,它们都会出现,数据库负责管理数据,开发工具负责管理项目,技术负责代码的框架,既相互独立,又相互依赖。以上描述的工具、技术都已转化为自身的技能,所以从技术角色考虑是可行的,工作人员对于技术的关注度并不高,只要程序可用即可。

3.2.2 经济可行性

经济可行性,可分为两种,支出和收入,该系统属于研究型毕业设计,所以收入部分暂不考虑。支出可分为,设备、场地、开发环境、人力、时间等一切需考虑的因素,所有信息都是影响形成系统的一部分。设备:只需一台笔记本电脑,配套的输入设备;场地:暂定为图书馆与校内的自习室;开发环境:良好;人力:自身、指导老师、同学;时间:从选题到毕业为止,大约8个月。从以上描述可知,大部分条件已经满足,所以该系统不会存在经济方面的问题,所以是可行的。

3.2.3社会可行性

社会可行性,广义而讲可涉及到道德方面、法律方面、社会方面,每个方面都会影响系统的形成。本系统的是独立且没有任何传播性质的信息,更涉及不到道德层面,法律层面;本系统也没有触发法律,没有赌博、黄色等类型信息,同时也是遵从国家法律,不会显示任何触发法律层面的信息;社会方面,该系统是为方便客户提供更好的服务,是轻量级的短视频内容理解与推荐系统,会为人们带来快速并有效查询的功能,也是具有贡献意义的。总体而言,该系统也是具有社会可行性的。 

3.3 系统用例分析 

短视频内容理解与推荐系统综合网络空间开发设计要求。目的是将传统管理方式转换为在网上管理,完成短视频内容理解与推荐系统的方便快捷、安全性高、交易规范做了保障,目标明确。短视频内容理解与推荐系统可以将功能划分为管理员功能和用户功能;

(1)管理员关键功能包含用户管理、短视频管理、交流论坛、系统管理、个人资料等进行管理。管理员用例如下:

图3-1 管理员用例图

(2)用户关键功能包含个人中心、修改密码、我的发布、我的收藏等进行管理。用户用例如下:

图3-2 用户用例图

3.4系统流程分析

流程图是一种使用具体的图形符号和连线来表示系统执行过程的工具。它能够清晰地描述系统的各个步骤,并帮助发现团队协同设计中可能存在的问题和改进的空间,从而及时修正和改进系统。

通过绘制流程图,可以对系统的需求和相关流程进行详细分析,将其细分为各个部分的设计。对于设计人员来说,在开发过程中,以流程图为基础可以快速提高逻辑思维能力,并指导后续操作。在系统设计中,程序设计是最重要的一部分,而流程图则是设计过程中的重要工具之一。

3.4.1 登录流程图

登录流程是该系统的第一个流程,登录的第一步是输入账号、密码登录,系统会验证账号与密码是否正确,正确时系统会判断账号类型再进入不同的后台;不正确时,会返回到登录的第一步,输入用户重新执行登录流程。该流程如图3-3所示。

图3-3登录流程图

3.4.2 添加新用户流程图

添加新用户的流程是先查询新用户名是否已存在,如已有该用户名,需重拟用户名并同时输入新用户的其它信息,添加新用户到数据库时会先验证数据是否完整,信息都正确且完整时,返回并刷新用户列表;信息不正确时,会返回输入信息的那一步。该流程如图3-4所示。

图3-4添加新用户流程图

第四章 系统概要设计

4.1系统设计原理

设计原理是指系统的设计来源,它将需求合理地分解为功能,并抽象地描述系统的模块和其下的功能。在功能模块化后,它们变成可组合和可拆解的单元。在设计时,所有信息都会分解并存储在各个表中,而界面不会显示所有定义的字段。在设计时,有几个重要要求,包括抽象、模块化、信息隐藏、低耦合和高内聚等特性。本系统的设计也符合这些要求。制作和显示流程是程序员需要分析研究的一部分。每个模块都是相对独立的,系统前台不显示账号操作权限范围外的信息。

4.2功能模块设计

该章节的功能模块设计,只是大概描述了系统的所有功能模块,将功能按权限来讲解。系统总体功能如图4-1所示。

图4-1 系统总体结构图

4.3 数据库设计

4.3.1数据库设计原则

学习程序设计的过程中,如果想要了解数据库管理系统或者按照系统接口的要求制作,就需要创建一个数据库管理系统模型来存储数据。这样,在进行应用程序编程时,就不需要加载操作系统页面的信息,从而提高整个系统的工作效率。在数据库管理系统中承载着大量的数据,可以说,它是一个管理信息系统建设的核心和基础,同时也为建设信息管理系统提出了新的查询、删除、修改和操作功能,使管理信息系统建设能够快速查询需要的数据,而不是直接从代码中查找。信息库管理系统由各个部分的信息表按照特定的方法进行准确的归并、排序和组合成信息库管理系统。

 4.3.2数据库E-R图设计

下面是整个短视频内容理解与推荐系统中主要的数据库表总E-R实体关系图。如图4-2所示: 

图4-2 E-R实体关系图

4.3.3数据库表结构设计

该系统采用的数据库是MySQL,根据该系统的数据存储特点进行数据库关系表的设计。下面是该系统中关键部分关系表的详细信息。

表4-1:短视频

字段名称

类型

长度

字段说明

主键

默认值

id

bigint

主键

主键

addtime

timestamp

创建时间

CURRENT_TIMESTAMP

zhibo

varchar

200

直播

daren

varchar

200

达人

tupian

longtext

4294967295

图片

fensi

int

粉丝

kbsj

varchar

200

开播时间

zbsc

varchar

200

直播时长

rqfz

int

人气峰值

gkrc

int

观看人次

sps

int

商品数

xse

varchar

200

销售额

xiaoliang

varchar

200

销量

thumbsupnum

int

0

crazilynum

int

0

clicktime

datetime

最近点击时间

clicknum

int

点击次数

0

discussnum

int

评论数

0

storeupnum

int

收藏数

0

表4-2:用户

字段名称

类型

长度

字段说明

主键

默认值

id

bigint

主键

主键

addtime

timestamp

创建时间

CURRENT_TIMESTAMP

yonghuzhanghao

varchar

200

用户账号

mima

varchar

200

密码

yonghuxingming

varchar

200

用户姓名

xingbie

varchar

200

性别

nianling

varchar

200

年龄

youxiang

varchar

200

邮箱

shoujihao

varchar

200

手机号

touxiang

longtext

4294967295

头像

表4-3:管理员表

字段名称

类型

长度

字段说明

主键

默认值

id

bigint

主键

主键

username

varchar

100

用户名

password

varchar

100

密码

image

varchar

200

头像

role

varchar

100

角色

管理员

addtime

timestamp

新增时间

CURRENT_TIMESTAMP

表4-4:收藏表

字段名称

类型

长度

字段说明

主键

默认值

id

bigint

主键

主键

addtime

timestamp

创建时间

CURRENT_TIMESTAMP

userid

bigint

用户id

refid

bigint

商品id

tablename

varchar

200

表名

name

varchar

200

名称

picture

longtext

4294967295

图片

type

varchar

200

类型

1

inteltype

varchar

200

推荐类型

remark

varchar

200

备注

表4-5:通知公告分类

字段名称

类型

长度

字段说明

主键

默认值

id

bigint

主键

主键

addtime

timestamp

创建时间

CURRENT_TIMESTAMP

typename

varchar

200

分类名称

表4-6:通知公告

字段名称

类型

长度

字段说明

主键

默认值

id

bigint

主键

主键

addtime

timestamp

创建时间

CURRENT_TIMESTAMP

title

varchar

200

标题

introduction

longtext

4294967295

简介

typename

varchar

200

分类名称

name

varchar

200

发布人

headportrait

longtext

4294967295

头像

clicknum

int

点击次数

0

clicktime

datetime

最近点击时间

thumbsupnum

int

0

crazilynum

int

0

storeupnum

int

收藏数

0

picture

longtext

4294967295

图片

content

longtext

4294967295

内容

表4-7:交流论坛

字段名称

类型

长度

字段说明

主键

默认值

id

bigint

主键

主键

addtime

timestamp

创建时间

CURRENT_TIMESTAMP

title

varchar

200

帖子标题

content

longtext

4294967295

帖子内容

parentid

bigint

父节点id

userid

bigint

用户id

username

varchar

200

用户名

avatarurl

longtext

4294967295

头像

isdone

varchar

200

状态

istop

int

是否置顶

0

toptime

datetime

置顶时间

表4-8:评论表

字段名称

类型

长度

字段说明

主键

默认值

id

bigint

主键

主键

addtime

timestamp

创建时间

CURRENT_TIMESTAMP

refid

bigint

关联表id

userid

bigint

用户id

avatarurl

longtext

4294967295

头像

nickname

varchar

200

用户名

content

longtext

4294967295

评论内容

reply

longtext

4294967295

回复内容

表4-9:配置文件

字段名称

类型

长度

字段说明

主键

默认值

id

bigint

主键

主键

name

varchar

100

配置参数名称

value

varchar

100

配置参数值

url

varchar

500

url

表4-10:直播信息

字段名称

类型

长度

字段说明

主键

默认值

id

bigint

主键

0

addtime

timestamp

创建时间

CURRENT_TIMESTAMP

zhibo

varchar

200

直播

daren

varchar

200

达人

tupian

longtext

4294967295

图片

fensi

int

粉丝

kbsj

varchar

200

开播时间

zbsc

varchar

200

直播时长

rqfz

int

人气峰值

gkrc

int

观看人次

sps

int

商品数

xse

varchar

200

销售额

xiaoliang

varchar

200

销量

第五章 系统功能实现

5.1系统前台功能实现

5.1.1首页功能实现

当用户访问系统的网址时,首先映入眼帘的是首页界面。在首页界面上,用户可以看到一个导航条,通过导航条可以跳转进入各个功能展示页面进行操作。系统首页界面如图5-1所示。

图5-1 系统首页界面

在注册流程中,用户在Vue前端填写必要信息(如用户名、密码等)并提交。前端将这些信息通过HTTP请求发送到Python后端。后端处理这些信息,检查用户名是否唯一,并将新用户数据存入MySQL数据库。完成后,后端向前端发送注册成功的确认,前端随后通知用户完成注册。这个过程实现了新用户的数据收集、验证和存储。系统注册界面如图5-2所示:

图5-2 系统注册界面

短视频:在短视频页面的输入栏中输入达人进行查询短视频详细信息,并根据需要进行收藏、点赞或评论操作;短视频页面如图5-3所示:

图5-3短视频页面

交流论坛:在交流论坛页面的输入栏中输入标题进行查询交流论坛详细信息,并根据需要进行点赞或评论操作;交流论坛页面如图5-4所示:

图5-4交流论坛页面

5.1.2个人中心

用户注册登录进入系统,点击个人中心可以对个人中心、修改密码、我的发布、我的收藏等功能进行操作。个人中心页面如图5-5所示:

图5-5个人中心界面

5.2管理员功能实现

在登录流程中,用户首先在Vue前端界面输入用户名和密码。这些信息通过HTTP请求发送到Python后端。后端接收请求,通过与MySQL数据库交互验证用户凭证。如果认证成功,后端会返回给前端,允许用户访问系统。这个过程涵盖了从用户输入到系统验证和响应的全过程。如图5-6所示。 

图5-6管理员登录界面

管理员进入主页面,主要功能包括对用户管理、短视频管理、交流论坛、系统管理、个人资料等进行操作。管理员主页面如图5-7所示:

图5-7管理员主界面

用户管理功能实现是在Django后端部分,您需要创建一个新的应用,然后在该应用下创建一个模型(models.py)来定义用户管理的数据结构,使用Django的ORM来处理与MySQL数据库的交互,包括用户管理信息的搜索、新增或删除等操作。接着,在views.py中编写视图逻辑来处理前端请求,使用Django的URL路由(urls.py)将请求映射到相应的视图函数。对于数据的验证和序列化,可以使用Django的表单或序列化器来实现。在前端Vue.js部分,将创建相应的Vue组件,在这些组件中使用axios或其他HTTP库与Django后端的API进行交互,实现用户管理信息的查看、修改或删除等功能。状态管理可以通过Vuex来维护,比如在store目录下定义用户管理模块的状态、突变、动作和获取器。如图5-8所示:

图5-8用户管理界面

短视频管理功能实现是在Django后端部分,您需要创建一个新的应用,然后在该应用下创建一个模型(models.py)来定义短视频的数据结构,使用Django的ORM来处理与MySQL数据库的交互,包括短视频信息的搜索、爬取数据或删除等操作。接着,在views.py中编写视图逻辑来处理前端请求,使用Django的URL路由(urls.py)将请求映射到相应的视图函数。对于数据的验证和序列化,可以使用Django的表单或序列化器来实现。在前端Vue.js部分,将创建相应的Vue组件,在这些组件中使用axios或其他HTTP库与Django后端的API进行交互,实现短视频信息的查看、修改或删除等功能。状态管理可以通过Vuex来维护,比如在store目录下定义短视频管理模块的状态、突变、动作和获取器。如图5-9所示:

图5-9短视频管理界面

管理员点击交流论坛。进入交流论坛页面输入帖子标题进行搜索或删除交流论坛详细信息。并进行查看、修改、查看评论或删除操作。如图5-10所示:

图5-10交流论坛界面

管理员点击通知公告分类。进入通知公告分类页面输入分类名称进行搜索、新增或删除通知公告分类详细信息。并进行查看、修改或删除操作。如图5-11所示:

图5-11通知公告分类界面

管理员点击通知公告。进入通知公告页面输入标题进行搜索、新增或删除通知公告详细信息。并进行查看、修改或删除操作。如图5-12所示:

图5-12通知公告界面

管理员进行爬取数据后,点击主页面右上角的看板,可以查看到短视频总数、达人、达人粉丝数、达人人气、达人观看人数、达人商品数等实时的分析图进行可视化管理;看板大屏选择了Echart作为数据可视化工具,它是一个使用JavaScript实现的开源可视化库,能够无缝集成到Java Web应用中。Echart的强大之处在于其丰富的图表类型和高度的定制化能力,使得管理人员可以通过直观的图表清晰地把握短视频的各项统计数据。

为了实现对短视频信息的自动化收集和更新,我们采用了Apache Spark作为爬虫技术的基础。Spark的分布式计算能力使得系统能够高效地处理大规模数据,无论是从互联网上抓取最新的短视频信息,还是对内部数据进行ETL(提取、转换、加载)操作,都能够保证数据的实时性和准确性。

在大数据分析方面,系统采用了Hadoop框架。Hadoop是一个能够处理大数据集的分布式存储和计算平台,它的核心是HDFS(Hadoop Distributed File System)和MapReduce计算模型。通过Hadoop,我们可以对收集到的大量数据进行存储和分析。看板页面如图5-13所示:

图5-13看板界面

第六章 系统测试

6.1系统测试的目的

测试的目的是发现潜在的问题,而不是证明程序没有缺陷。我们可以通过编写测试用例来描述测试的步骤、预期的界面或效果与实际结果之间的差距,从而验证程序的正确性。测试过程中需要遵循一些原则,如提供输入条件和预期输出结果,制定详细的测试用例来规范测试流程,并适当推进测试进度。正常的测试流程应从项目立项开始,根据需求编写测试用例并与程序开发同步进行。在程序开发完成后,测试用例也相应完成。当程序开发移交给测试部门时,可以直接展开测试工作。

6.2软件测试过程

软件测试是软件开发过程中的最后一个阶段,它贯穿于整个设计过程,是一项重要而庞大的任务。软件测试需要对程序的所有部分进行全面测试。每个部分的测试都有所不同,在开始测试之前需要进行以下几个阶段:

一、集成测试:该测试基于单元测试,用于测试系统的各个功能模块。任何软件设计都会有一个集成阶段,因此在软件测试过程中,集成测试是必不可少的一部分。在集成测试过程中,由于测试是在模块之间进行的,因此可能会在测试过程中没有发现问题,但在整体测试中会暴露出来。同时,在集成测试过程中,需要注意模块连接过程中是否有数据丢失。还应注意的是,尽管单个模块的错误可能很少且没有影响,但拼接时可能会对系统产生较大影响。

二、系统测试:系统测试遵循集成测试的原则。系统测试将把集成测试的部分作为整个系统的一部分来进行。它将软件与所有硬件设备一起进行实际操作,以检测模拟的实际环境中是否存在错误。系统测试需要与计划中的理想情况进行比较,以找出与预期的差异。在分析设计器后确定如何修改。在实际的软件操作过程中,可能会出现许多意外错误,而测试人员可能无法在第一时间解决问题。因此,系统测试应尽可能在实际运行情况下进行,以达到更好的测试效果。

三、验收测试:验收测试是在软件开发完成并发布之前的最终系统测试阶段。它需要了解用户和合作伙伴的需求。我们将与他们一起完成测试,并根据他们的需求进行有针对性的修改,以确保软件能够更好地同时满足用户需求和合作伙伴的期望。

6.3系统测试用例

性能测试是指通过自动化测试工具模拟系统在不同负载和压力情况下,观察平均响应时间、CPU占用率和内存占用率等性能评价指标的变化情况,以检验系统性能是否能达到预期目标,确保平台上线后稳定运行。

本文采用开源的测试工具JMeter模拟用户对平台API网关的并发请求行为,并发量从200开始逐渐递增,利用JMeter自带的监听器与插件记录平均响应时间、CPU占用率和内存占用率等性能评价指标,具体测试结果如表6.1所示。

表6.1 API网关性能测试结果

由测试结果可知,在系统并发量逐渐递增到1200的过程中,平均响应时间控制在1.5秒内,异常率保持为0%,响应失败率小于5%.  CPU占用率小于80%,内存占用率小于95%,达到了预期的性能目标。当并发量达到1400时,有一部分请求出现异常,各项性能指标也超出以上标准,说明目前系统在1400并发请求时达到了性能瓶颈。

结    论

本系统将采用Python技术和Django框架搭建,从选题开始经历了一系列环节。首先进行了选题背景信息和目的及意义的分析,通过对国内外研究的调研和整理,完成了需求分析。然后设计了数据库的模型和表,并实现了具体的代码。

经过分析和调研,该系统的功能包括用户管理、短视频管理、交流论坛、系统管理、个人资料等系统管理功能。

在系统的设计和实现过程中,我们一一经历了每个环节,并且顺利完成了任务。在配置系统的开发工具时,我们遇到了各种问题。幸运的是,在导师和同学的帮助下,我们成功解决了这些问题。尽管本系统还存在一些不完善的地方,但我们相信在技术和经验都更加丰富的情况下,我们将能够进一步完善系统的不足之处。

通过这次项目的实践,我们对Python技术和Django框架的应用有了更深入的了解和实践经验。这将对我们未来的学习和工作产生积极的影响。同时,我们也意识到在实际项目中遇到问题时要勇于面对和解决,不断学习和提升自己的技能才能更好地应对挑战。

致  谢

亲爱的朋友们:

在我即将结束这段旅程之际,我想借此机会向你们表达我的衷心感谢。这段时间里,你们给予了我无尽的支持和鼓励,让我感到无比幸运和温暖。无论是在困难时刻还是在成功时刻,你们始终陪伴在我身边,给予我力量和勇气去面对生活的挑战。

在这里我第一的就是要感谢我的家人。你们是我生命中最重要的人,也是我最坚实的后盾。无论我遇到什么困难,你们总是在我身边,给予我无条件的爱和支持。你们的无私奉献和牺牲精神让我深感敬佩和感激。没有你们的支持,我将无法走到今天这一步。

感谢我的朋友们。你们是我生活中最珍贵的财富,是我最亲密的伙伴。我们一起经历了许多欢笑和泪水,分享了彼此的喜怒哀乐。你们的存在让我的生活变得更加丰富多彩,你们的友谊让我感受到了真正的快乐和幸福。无论是在困难时刻还是在成功时刻,你们始终与我同在,给予我无尽的支持和鼓励。

我还要感谢我的导师和老师们。你们是我学习和成长的引路人,是我人生中最重要的导师。你们不仅传授给我知识,更教会了我如何思考、如何学习、如何成为一个更好的人。你们的教诲将成为我一生的财富,我将永远铭记在心。

最后,我要感谢所有曾经帮助过我的人。无论是一次微笑、一句问候,还是一次慷慨的帮助,都让我感受到了人间的温暖和善意。你们的善良和友善让我相信世界是美好的,也让我更加坚定地走在自己的道路上。

在这个特别的时刻,我想对你们说声谢谢。谢谢你们一直以来对我的支持和鼓励,谢谢你们给予我的爱和关怀。没有你们的帮助和支持,我将无法走到今天这一步。我将永远珍惜我们之间的友谊和情谊,希望我们的未来能够更加美好。我想以一句话来表达我对你们的感激之情:“有你们在身边,我永远不会孤单。”谢谢大家!

参考文献

[1]吴建洪. 基于Django的Web自动化测试平台的研发与应用[D].西南大学,2022.DOI

[2]郭瀚亭.基于Django框架的文件分享平台的设计与开发[J].信息记录材料,2022,23(03)

[3]孙建军,李琪,吕强.浅析Web开发工具Django的MVC架构[J].品牌与标准化,2021(06):105-106+109.

[4]张国强,刘长宁.Django对MVC模式的发展及其在CRISPRlnc数据库中的运用[J].计算机时代,2021(10):32-34+40.

[5]邱红丽,张舒雅.基于Django框架的web项目开发研究[J].科学技术创新,2021(27):97-98.

[6]谢振杰,付伟,罗芳.国密算法Python工具包的性能优化方法[J].信息安全研究,2023,9(10):1001-1007.

[7]焦宇,李民,王欢等.基于MySQL性能调优的推荐系统优化设计[J].软件导刊,2022,21(09):108-112.

[8] 徐鹏涛. 基于Vue的前端开发框架的设计与实现[D]. 山东: 山东大学, 2020.

[9]Zhang Xiao, Yu Ali, Wang Xin, Zhang Xue. Sports Work Strategy of College Counselors Based on MySQL Database Big Data Analysis[J]. International Journal of Information Technology and Web Engineering (IJITWE), 2023, 18 (1): 1-14.

[10] David Macleod. Introduction To Python Xml And Web Services[M]. Tritech Digital Media: 2020-08-23.

源码获取方式:关注❤  点赞 👍 收藏 ⭐ 私信博主免费领取项目资源,谢谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值