From Orthogonal Time Frequency Space to Affine Frequency Division Multiplexing

From Orthogonal Time Frequency Space to Affine Frequency Division Multiplexing

《从正交时频空间到仿射频分复用》

下一代无线系统将集成感知与通信(ISAC)功能,不仅为了实现新的应用,还为了应对高移动性场景以及毫米波(mmWave)和太赫兹(THz)频段下的双分散信道等挑战。双分散信道的特点包括多路径延迟和多普勒频移,这些环境特征对信号传输造成影响。

为实现这些目标,一种新兴的解决方案是设计新型波形,这些波形利用了双分散信道的时间变化特性与环境散射体的内在关系。例如,延迟–多普勒域的正交时频空间(OTFS)波形和最近提出的基于啁啾域的仿射频分复用(AFDM)波形。这两种波形的设计目的在于同时解决双分散特性带来的不利影响,并利用这些特性来估计(或感知)环境信息。

本文旨在对支持超5G(B5G)和6G系统中双分散信道可靠ISAC的信号处理技术进行全面的总结和分析,重点讨论OTFS和AFDM波形。同时,与传统的正交频分复用(OFDM)波形进行对比,以阐明这些波形的主要特性。分析表明,与OFDM相比,OTFS和AFDM能够显著提高对多普勒频移引起的载波间干扰(ICI)的鲁棒性。此外,OTFS和AFDM有效信道的延迟–多普勒域正交性为集成感知功能的设计和性能提供了显著优势。

引言

预计超5G(B5G)和6G无线系统将采用超高频(EHF)技术,工作在毫米波(mmWave)和太赫兹(THz)频段,以支持物联网(IoT)、边缘计算、智能城市等应用,以及车联网(V2X)技术、高速铁路和非地面网络等场景。

这些系统通常会面临异构和高移动性条件的影响。高移动性场景对无线通信系统构成了显著挑战,这是由于由此产生的双分散无线信道,也称为时变多径信道或时频选择性信道。这类异构散射环境会以路径延迟和多普勒频移的形式劣化接收信号,从而导致符号间干扰(ISI)和载波间干扰(ICI),这会在传统且高效的调制方案(如OFDM)下显著降低通信性能。

与这一挑战相伴的是,人们对超5G(B5G)和6G系统提出了更高的期望,即这些系统将提供集成感知与通信(ISAC)功能,可能通过统一的硬件和信号处理技术来实现。除了为上述应用提供环境感知和准确可靠的定位信息外,ISAC带来的改进对于提高频谱和能源效率、降低在高移动性场景中运行的系统的硬件成本具有重要意义。

尽管目前尚难以预测究竟是B5G还是6G标准将首次在商用系统中采用并实现ISAC功能,但这一主题近年来已成为无线系统预标准化阶段讨论的焦点话题。值得注意的例子包括6G智能网络与服务行业协会(6G-IA),其成员将ISAC视为优先技术,以及5G汽车协会(5GAA),该组织将ISAC视为支持蜂窝车联网(V2X)服务的关键技术。

虽然可以合理预期,任何形式的实用化5G基础ISAC都可能会在下行/侧链上采用传统的正交频分复用(OFDM),特别是循环前缀(CP)OFDM,以及在上行链路中采用DFT扩展的OFDM,但对于6G而言,文章研究的新型波形(如OTFS和AFDM)应该被考虑在内,以充分释放ISAC的潜力。事实上,重要的标准化机构(如欧洲电信标准化协会ETSI和第三代合作伙伴计划3GPP)已经将ISAC添加到其工作计划和路线图中,其中ETSI于2023年11月专门成立了一个ISAC相关的新工作组。

顺应这一趋势,最近提出了一些新型波形。这些波形在双分散条件下能够保持符号的正交性,不仅对高移动性场景具有较强的鲁棒性,同时也为集成感知与通信(ISAC)提供了优势,因为它们能够固有地估计环境参数,如散射体的距离和速度(即延迟和多普勒频移)。其中最受欢迎的一种方法是正交时频空间(OTFS)调制,它通过逆辛普莱克有限傅里叶变换(ISFFT)直接将信息符号调制到延迟–多普勒域上。凭借其在高移动性超5G(B5G)系统中的卓越性能,OTFS 获得了广泛关注,相较于目前使用的波形(如 OFDM)表现更为优越。

实际上,OTFS 的延迟–多普勒域完整表示能够自然地传递信道中的速度和距离信息,这些信息以相应的多路径延迟和多普勒频移的形式呈现,从而在 ISAC 方面带来了显著的益处。因此,已经提出了大量基于 OTFS 的 ISAC 技术,通过从信道状态信息(

### 低轨卫星通信中的OTFS信号检测方法和技术 正交时频空间调制(Orthogonal Time Frequency Space, OTFS)是一种新兴的无线通信技术,特别适用于高速移动场景下的可靠传输。对于低地球轨道(LEO)卫星通信而言,由于多普勒效应显著以及信道动态变化剧烈,传统的OFDM等调制方案可能无法满足性能需求[^1]。 #### OTFS的核心原理 OTFS通过将数据映射到延迟-多普勒域上,在接收端利用匹配滤波器实现解调。这种方法能够有效对抗快速时间选择性和频率选择性衰落的影响。具体来说,OTFS的关键优势在于它能够在高动态环境中保持较高的谱效率和误码率性能。 #### LEO卫星通信中OTFS信号检测的主要方法 以下是几种常见的OTFS信号检测技术和优化策略: 1. **基于最大似然估计(Maximum Likelihood Estimation, MLE)的检测** 最大似然估计是最基本也是最有效的OTFS信号检测方法之一。该方法通过对接收到的信号进行概率密度函数建模来寻找最优解。然而,MLE通常具有较高复杂度,因此在实际应用中需结合简化算法降低运算负担。 2. **最小均方误差(Minimum Mean Square Error, MMSE)检测** MMSE检测旨在最小化估计值与真实值之间的平方差。相比MLE,MMSE提供了更优的计算效率,尤其适合处理噪声干扰较大的环境。此外,针对非理想同步情况下的改进型MMSE也被广泛研究用于提升鲁棒性。 3. **迭代检测与译码联合机制** 这种方法结合了软信息反馈的思想,允许前向纠错编码(FEC)模块参与多次循环更新过程以进一步提高准确性。特别是在深空探测或者远距离星际通讯领域内显得尤为重要。 4. **机器学习辅助的智能检测** 随着人工智能的发展,越来越多的研究者尝试引入深度神经网络(DNN)、卷积神经网络(CNN)以及其他先进架构来进行自动化特征提取及分类判断工作。这些模型可以自适应调整参数从而更好地应对复杂的传播特性变化趋势。 5. **稀疏恢复理论驱动的技术路线** 利用压缩感知等相关概念设计新型重建框架,则可以从少量测量样本当中精确还原原始发送序列内容。这对于资源受限条件下仍然希望维持良好服务质量的应用场合尤为适用。 ```python import numpy as np def otfs_signal_detection(received_signal, channel_estimate): """ A simplified example of an OTFS signal detection function using basic operations. Parameters: received_signal (numpy.ndarray): The complex-valued array representing the received signal. channel_estimate (numpy.ndarray): Estimated channel state information. Returns: detected_symbols (numpy.ndarray): Detected symbols after processing. """ # Perform matched filtering operation filtered_output = np.convolve(received_signal, np.conj(channel_estimate[::-1]), mode='same') # Apply thresholding or other decision rules here... detected_symbols = np.where(np.abs(filtered_output) > 0.5, 1, 0) return detected_symbols ``` 上述代码片段展示了一个非常基础版本的OTFS信号检测流程示意程序。请注意这只是一个教学性质的例子,并未考虑实际情况中的诸多细节因素影响。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值