项目场景:
试题 入门训练 Fibonacci数列
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1。
当n比较大时,Fn也非常大,现在我们想知道,Fn除以10007的余数是多少。
输入格式
输入包含一个整数n。
输出格式
输出一行,包含一个整数,表示Fn除以10007的余数。
说明:在本题中,答案是要求Fn除以10007的余数,因此我们只要能算出这个余数即可,而不需要先计算出Fn的准确值,再将计算的结果除以10007取余数,直接计算余数往往比先算出原数再取余简单。
样例输入
10
样例输出
55
样例输入
22
样例输出
7704
数据规模与约定
1 <= n <= 1,000,000。
问题描述:
拿到题目后第一次做时,直接递归求Fn,然后取余。。。代码如下:#include<iostream>
using namespace std;
long F(long n) {
if (n == 1 || n == 2)
{
return 1;
}
else
{
return F(n - 1) + F(n - 2);
}
}
int main() { //不符合资源限制,时间太长。
long n;
cin >> n;
cout << F(n) % 10007 << endl;
system("pause");
return 0;
}
接着找了下百度,发现没必要把所有Fn值求出来,只要求出结果就行。利用a对c的余数与b对c的余数之和等于(a+b)对c的余数。。。于是
#include<iostream>
using namespace std;
int F[1000000]; //用于存储Fn的数组
int main()
{
int n;
cin >> n;
for (int i = 1; i <= n; i++) //为了与题目的下标一致如F1
{
if (i == 1 || i == 2)
{
F[i] = 1;
}
else {
F[i] = F[i - 1] + F[i - 2];
}
F[i] %= 10007; //必须求出F[i]的同时对其求余,不能之后再做,不然有些输出有误
}
cout << F[n];
return 0;
}
发现数组太大,前面的好多数据浪费,只需要存储三个值就够了。。。于是
#include<iostream>
using namespace std;
int main() {
int a1 = 1, a2 = 1;
//定义a1,a2分别用于存储Fn=Fn-2+Fn-1中的Fn-2和Fn-1
int temp; //用于存储Fn
long n;
cin >> n;
for (long i = 3; i <= n; i++)
//从3开始循环,等于n时结束循环,方便理解
{
temp = (a1 + a2) % 10007; //计算a1+a2并取余数
a1 = a2; //后移
a2 = temp; //后移
}
cout << temp << endl;
return 0;
}