用于长期序列预测的周期性解耦框架(Periodicity Decoupling Framework for Long-Term Series Forecasting)

摘要

近年来,基于卷积神经网络(CNN)和Transformer的方法在时间序列预测中取得了显著进展,擅长捕捉短期局部变化和长期依赖性。然而,真实世界中的时间序列往往包含复杂的时间模式,现有方法主要侧重于直接从1D时间序列中建模时间变化,难以有效应对这些复杂性。本文提出了一种新的周期性解耦框架(PDF),通过解耦后的时间序列捕捉2D时间变化,用于长期序列预测。PDF框架主要由三个模块组成:多周期解耦模块(MDB)、双重变化建模模块(DVMB)和变化聚合模块(VAB)。与以往仅建模1D时间变化的方法不同,PDF框架主要建模解耦后的2D时间变化。实验结果表明,PDF在多个真实世界的长期时间序列数据集上的预测性能和计算效率都优于其他最新方法。

引言

时间序列预测在天气预报、能源管理、金融投资和交通流量估计等多个领域中发挥着重要作用。随着深度学习的发展,基于深度学习的时间序列预测方法逐渐兴起,主要分为基于CNN和Transformer的方法。现有的基于DL的方法主要侧重于直接建模1D时间变化,但现实中的时间序列往往表现出复杂的周期性特征。为此,本文提出了周期性解耦框架(PDF),该框架利用时间序列的周期性,将1D时间序列解耦为更简单的短期序列和长期序列,分别表示局部变化和全局依赖。通过频率切片和周期修补,进一步细化这些变化信息,从而提高长期序列预测的准确性。

方法概述

PDF框架包含三个主要组件:

  1. 多周期解耦模块(MDB):首先在频域中学习输入序列的周期性,并将1D时间序列转换为短期和长期序列,然后重塑为2D张量。
  2. 双重变化建模模块(DVMB):并行地建模短期和长期变化。
  3. 变化聚合模块(VAB):聚合所有双重变化建模模块的输出,生成最终预测结果。
实验结果

在多个长期时间序列数据集上的实验结果表明,PDF在预测性能和计算效率方面均优于现有方法,特别是在大幅减少计算成本的同时,保持了较高的预测准确性。


优点

  1. 捕捉短期和长期变化:通过多周期解耦模块,PDF能够有效分离并捕捉时间序列中的短期和长期变化信息。
  2. 并行建模架构:双重变化建模模块的并行架构提高了计算效率,并能够保持短期和长期变化的完整性。
  3. 计算效率高:PDF框架在减少计算成本的同时,能够处理长时间序列,特别是在大规模数据集上的应用具有明显优势。

缺点

  1. 复杂性增加:尽管提高了预测精度,但引入多周期解耦和频率切片等操作后,模型的复杂度有所增加,训练和推理时间可能较长。
  2. 对非周期性数据的适应性有限:虽然在周期性时间序列上表现优异,但该框架可能在非周期性序列上效果有限。

创新点

  1. 周期性解耦机制:PDF引入了基于频率和周期的解耦方法,这是对现有时间序列建模的重大改进,使得能够更好地提取短期和长期变化信息。
  2. 2D时间变化建模:与传统的1D时间序列建模方法不同,PDF通过将时间序列转化为2D张量,使得模型能够捕捉更多的时间依赖信息。

可改进点

  1. 增强对非周期性数据的处理能力:未来可以通过引入新的机制,使PDF框架在处理非周期性时间序列时表现得更加稳健。
  2. 减少模型复杂性:在保证预测精度的前提下,进一步优化模型架构,减少不必要的计算开销,以提高在大规模数据集上的训练和推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值