- 博客(9)
- 收藏
- 关注
原创 聚类分析算法全解析
聚类分析是一种无监督机器学习方法,用于将数据对象分组为若干簇,使同一簇内对象相似度高而不同簇间差异大。主要包括K-means、层次聚类、DBSCAN等算法类型,适用于数据探索、市场细分、异常检测等场景。学习内容涵盖算法定义、函数使用、数据集构建和分析评估,重点掌握相似性度量、簇内同质性和簇间异质性等核心概念。实践时需注意数据标准化、参数调优和算法选择,可通过轮廓系数等指标评估效果。典型应用包括客户细分、图像分割等,进阶方向涉及深度学习聚类和时序数据分析。
2025-12-23 19:52:16
674
原创 大数据分析:从理论到实战
大数据分析是指处理海量、多样化、高速数据以提取价值信息的技术,其核心包括数据清洗、存储、处理分析和可视化。关键特征为5V模型:规模大、速度快、类型多、质量参差不齐但价值高。主要应用领域涵盖商业智能、医疗健康、智慧城市和金融风控等。技术栈包括Hadoop、Spark等分布式系统,结合机器学习算法实现模式识别和预测。未来趋势将向边缘计算、自动化分析和隐私保护方向发展。典型分析流程涉及数据加载、清洗、统计建模和可视化,通过Python或PySpark等工具实现。
2025-12-16 16:14:13
758
原创 在Linux中安装flask实战项目
本文介绍了在Linux环境下搭建Flask应用的完整流程,包括系统准备、虚拟环境配置、基础应用开发和测试部署。主要内容涵盖:1) Linux环境配置与Python安装;2) 使用venv创建隔离开发环境;3) 编写包含健康检查的简易Flask应用;4) 运行测试及调试技巧。文章提供了详细的命令行操作示例,适合快速搭建Python Web开发环境参考。
2025-11-17 15:21:13
1074
原创 一文掌握Pandas统计分析基础:从数据读取到洞察提取
在数据科学领域,Pandas是最常用的数据处理与分析工具之一。它提供了高效且灵活的数据结构和数据分析工具,能够轻松处理复杂的数据清洗、转换、统计和可视化任务。本文将深入介绍Pandas统计分析的基础知识,带你快速上手数据处理与分析。
2025-06-05 11:53:43
1004
原创 python数据分析中pandas统计分析基础之DataFrame的使用操作
在数据科学与数据分析领域,高效处理和分析数据是获取洞察、驱动决策的核心。而DataFrame作为Python中数据处理的基石,就像是一把万能钥匙,能打开结构化数据的宝库。无论是处理CSV文件中的销售记录,还是整合数据库里的用户信息,DataFrame都以其表格化、灵活易用的特性,成为数据分析师、科学家和工程师的必备工具。它允许你在同一数据结构中混合数值、文本、日期等多种数据类型,支持快速筛选、统计、转换和合并等操作。
2025-06-05 11:31:27
872
原创 python数据分析中pandas统计分析基础之DataFrame的使用操作
pandas是一个开源的数据分析库,提供了丰富强大的数据结构和数据分析工具,其中最常用的数据结构是DataFrame。DataFrame是一个二维的数据结构,类似于电子表格或SQL表,每列可以是不同的数据类型。通过pandas的DataFrame,我们可以轻松地加载、处理、分析和操作数据。DataFrame的基本操作包括:通过pandas提供的这些功能,我们可以方便地进行各种数据分析任务,如数据清洗、数据整合、数据探索等。在数据科学与数据分析领域,高效处理和分析数据是获取洞察、驱动决策的核心。而DataFr
2025-06-05 10:31:50
1073
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅