从暴力到最优——力扣88.合并两个有序数组

力扣88.合并两个有序数组

在这里插入图片描述


合并两个有序数组题解(详解三种方法:直接合并、双指针正序、双指针逆序)

一、题目回顾

给定两个按 非递减顺序 排列的整数数组 nums1nums2,其中:

  • nums1 的前 m 个元素为有效数据,后 n 个元素为 0(预留空间);
  • nums2 的长度为 n
  • 要求将 nums2 合并到 nums1 中,使得 nums1 成为一个新的有序数组;
  • 函数不需要返回值,直接在原地修改 nums1

示例

输入:nums1 = [1,2,3,0,0,0], m = 3
      nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]

二、题目分析

题目要求:

  • 数组非递减(即升序,可有重复);
  • 在原数组 nums1 中合并结果;
  • 空间有限,尽可能在 O(1) 额外空间内完成;
  • 时间复杂度要求为 O(m + n)。

核心挑战在于:

如何避免提前覆盖掉 nums1 的有效元素。

如果我们从前往后直接合并,当 nums1 较小时可能会被覆盖。因此,需要考虑从后往前合并的策略。


三、方法一:直接合并 + 排序(简单但效率不高)

思路

  1. 先将 nums2 中的元素直接放入 nums1 的尾部空位;
  2. 调用排序函数(如 Arrays.sort)对整个 nums1 排序。

代码实现

import java.util.Arrays;

class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        for (int i = 0; i < n; i++) {
            nums1[m + i] = nums2[i];
        }
        Arrays.sort(nums1);
    }
}

在这里插入图片描述

复杂度分析

  • 时间复杂度:O((m + n) log(m + n))
  • 空间复杂度:O(1)

优缺点

  • 优点:实现简单,几行代码即可;
  • 缺点:没有利用数组原有的有序性,不符合题目的“进阶要求”。

四、方法二:双指针正序合并(需要额外数组)

思路

  1. 创建一个新数组 sorted
  2. 使用两个指针 p1p2 分别指向 nums1nums2
  3. 比较两个指针所指的元素,将较小的放入 sorted
  4. 当某一方到达末尾,直接拷贝另一方剩余元素;
  5. 最后将 sorted 的内容拷回 nums1

代码实现

class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        int[] sorted = new int[m + n];
        int p1 = 0, p2 = 0, p = 0;

        while (p1 < m && p2 < n) {
            if (nums1[p1] <= nums2[p2]) {
                sorted[p++] = nums1[p1++];
            } else {
                sorted[p++] = nums2[p2++];
            }
        }

        while (p1 < m) sorted[p++] = nums1[p1++];
        while (p2 < n) sorted[p++] = nums2[p2++];

        System.arraycopy(sorted, 0, nums1, 0, m + n);
    }
}

在这里插入图片描述

复杂度分析

  • 时间复杂度:O(m + n)
  • 空间复杂度:O(m + n)

优缺点

  • 优点:清晰直观;
  • 缺点:使用了额外数组,空间复杂度较高。

五、方法三:双指针逆序合并(最优解)

核心思想

从后往前合并可以避免覆盖问题:

  1. 设三个指针:

    • p1 = m - 1 指向 nums1 的最后一个有效元素;
    • p2 = n - 1 指向 nums2 的最后一个元素;
    • p = m + n - 1 指向 nums1 的最后一个位置(总长度)。
  2. 比较 nums1[p1]nums2[p2]

    • 较大的放到 nums1[p]
    • 指针左移;
  3. 重复直到 p2 < 0;

  4. nums1 剩余部分无需处理;
    nums2 还有剩余,拷贝剩下的部分。

图示(示例)

nums1 = [1,2,3,0,0,0]
nums2 = [2,5,6]
初始:
p1=2, p2=2, p=5

比较 3 vs 6 → 6 放到 nums1[5]
nums1 = [1,2,3,0,0,6]

继续比较 3 vs 5 → 5 放到 nums1[4]
nums1 = [1,2,3,0,5,6]

继续比较 3 vs 2 → 3 放到 nums1[3]
nums1 = [1,2,3,3,5,6]

最后将 nums2 剩下的 [2] 放入。

代码实现

class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        int p1 = m - 1, p2 = n - 1, p = m + n - 1;

        while (p1 >= 0 && p2 >= 0) {
            if (nums1[p1] > nums2[p2]) {
                nums1[p--] = nums1[p1--];
            } else {
                nums1[p--] = nums2[p2--];
            }
        }

        // 如果 nums2 还有剩余,拷贝到前面
        while (p2 >= 0) {
            nums1[p--] = nums2[p2--];
        }
    }
}

在这里插入图片描述


复杂度分析

  • 时间复杂度:O(m + n)
  • 空间复杂度:O(1)
  • 不需要额外空间,完全原地合并。

六、三种方法对比

方法思路时间复杂度空间复杂度优点缺点
1. 直接合并排序简单粗暴O((m+n)log(m+n))O(1)简洁效率不高
2. 双指针正序从前往后合并O(m+n)O(m+n)逻辑直观需要额外数组
3. 双指针逆序从后往前合并O(m+n)O(1)原地合并,最优稍复杂但经典

七、总结

  • 核心思想: 充分利用已排序数组的特性;
  • 关键技巧: 从尾部开始合并,避免元素覆盖;
  • 最优实现: 双指针逆序法(O(m + n) 时间,O(1) 空间)。

### C语言实现合并两个有序数组 在C语言中,可以采用双指针方法来高效地合并两个排序的数组。这种方法利用了输入数组已经排序的特点,在不额外占用大量空间的情况下完成合并操作。 对于给定的任务——将`nums2`合并入`nums1`保持其非递减顺序排列,可以从两个数组的有效部分末端开始向前遍历比较,逐步填充至`nums1`的尾部位置[^5]。 下面展示一段具体的代码示例: ```c void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n){ int end1 = m - 1; // 指向第一个数组最后一个有效元素的位置 int end2 = n - 1; // 指向第二个数组最后一个有效元素的位置 int end = m + n - 1; // 指向合并后数组应放置下一个较大值的位置 while (end1 >= 0 && end2 >= 0) { if (nums1[end1] > nums2[end2]) { nums1[end--] = nums1[end1--]; } else { nums1[end--] = nums2[end2--]; } } // 如果num2还有剩余,则全部复制过来;因为如果此时有任一数组未处理完毕, // 剩下的一定是较小者,而这些较小者的原始位置已经在正确的地方(即nums1前面) while(end2 >= 0){ nums1[end--] = nums2[end2--]; } } ``` 此函数接收五个参数:目标数组`nums1`及其大小`nums1Size`、实际长度`m`;源数组`nums2`及其大小`nums2Size`、实际长度`n`。通过调整索引来避免越界访问的同时完成了数组的合并工作[^4]。 该算法的时间复杂度为O(m+n),其中m和n分别是两个输入数组的实际长度。这是因为每个元素最多只会被访问一次。此外,由于是在原地修改`nums1`,因此不需要额外的空间开销,除了几个用于追踪进度的变量外[^3]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值