《剑指offer》- 面试题3:数组中重复的数字(java实现)

题目一: 

        在一个长度为n的数组里的所有数字都在0到n-1的范围内。 数组中某些数字是重复的,但不知道有几个数字是重复的。也不知道每个数字重复几次。请找出数组中任意一个重复的数字。 例如,如果输入长度为7的数组{2,3,1,0,2,5,3},那么对应的输出是重复的数字2或者3。

       比较容易想到的方法用哈希表存出现过的数,从头到尾遍历一遍,每遍历一个数字都可以判断哈希表中是否包含当前数字。时间复杂度O(n),同时还用了O(n)的空间。

        注意到数字都在0-n-1的范围,如果没有重复的数字,排序后,数字i应该正好在下标为i的位置。所以我们从头扫描数组,扫到下标为i的位置时,判断值是否为i,是则扫描下一位;如果不是,比如它为m,我们判断它是否和下标为m的数字相同,相同则说明出现重复数字,不同我们就交换这两个数字,这样m就到了下标为m的位置。重复这个过程就能找到重复的数字。

        上述思路可以用如下Java代码实现:       

public class DuplicationInArray {
    private int duplicatedNumber;
    public boolean findDuplicatedNumber(int[] array, int length) {
        if (array == null || length <= 0) throw new IllegalArgumentException("Wrong Arguments");
        for (int i = 0; i < length; i++) {
            if (array[i] < 0 || array[i] > length -1) throw new IllegalArgumentException("Wrong Numbers in Array");
        }
        for (int i = 0; i < length; i++) {
            while (array[i] != i) {
                if (array[i] == array[array[i]]) {
                    duplicatedNumber = array[i];
                    return true;
                }
                //swap
                int temp = array[i];
                array[i] = array[temp];
                array[temp] = temp;
            }
        }
        return false;
    }

    public static void main(String[] args) {
        DuplicationInArray duplicationInArray = new DuplicationInArray();
        int[] array = {2,3,1,0,2,5,3};
        if(duplicationInArray.findDuplicatedNumber(array,array.length)) System.out.println("find duplicated number is "+ duplicationInArray.duplicatedNumber);
    }
}


题目二:

        在一个长度为n+1的数组里的所有数字都在1~n的范围内,所以数组中至少有一个数字是重复的。请找出数组中任意一个重复的数字,但是不能修改输入的数组。例如输入数组{2,3,5,4,3,2,6,7},输出的重复数字是2或3。

        不能修改数组很容易又想到用哈希表辅助,但是有没有更好的方法?

        借鉴二分法的思想,如果把1~n的数组中的数按值大小分为两部分,前半部分1~m,后半部分m+1~n。如果1~m部分数字数目大于m,则说明这一半的区间中一定有重复的数字,反之另一边存在重复的数字。不断将重复数字的区间一分为二,最终找到重复数字。

        需要指出的是这种算法不能保证找到所有重复数字。例如{2,3,5,4,3,2,6,7}中,1~2范围内数字出现两次,但是不能判断是某一个数字出现两次,还是1和2各出现一次。代码实现如下:

public class DuplicationInArrayNotEdit {
    private int countRange(int[] array,int length, int start, int end) {
        if (start < 0 || end > length-1) throw new IllegalArgumentException("Wrong Arguments");
        int count = 0;
        for (int i = 0; i < length; ++i) {
            if (array[i] <= end && array[i] >= start) ++count;
        }
        return count;
    }
    public int returnOneDuplication(int[] array) {
        if (array == null) throw new IllegalArgumentException("Wrong Arguments");
        int length = array.length;
        int start = 1;
        int end = length - 1;
        while (start <= end) {
            int middle = ((end -start) >> 1) + start;
            int count = countRange(array, length, start, middle);
            if (start == end) {
                if (count > 1) return start;
                else break;
            }
            if (count > middle - start + 1) end = middle;
            else start = middle + 1; //注意这个+1
        }
        return -1;
    }

    public static void main(String[] args) {
        DuplicationInArrayNotEdit duplicationInArrayNotEdit = new DuplicationInArrayNotEdit();
        int[] Array = new int[]{2,3,5,4,3,2,6,7};
        System.out.println(duplicationInArrayNotEdit.returnOneDuplication(Array));
    }
}
    对于输入长度为n的数组,由于基于二分法的思想,所以countRange调用的次数为logn,每次遍历需要O(n),所以总的时间复杂度为O(nlogn),空间复杂度为O(1),相当于用空间换时间。
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页