超分辨率重建
文章平均质量分 88
化生。
这个作者很懒,什么都没留下…
展开
-
Image super-resolution via sparse representation论文总结
摘要: 本文提出了一个基于单幅图像的超分辨率重建。图像可以被表示为一个稀疏线性组合和过完备字典的形式。所以本文提出了将计算得到的低分辨率图像的图像块的稀疏表示系数用于作为高分辨率图像的稀疏表示系数。介绍: 1、常规的超分辨重建方法: (1)输入同一场景的多幅低分辨率图像,调整亚像素精度。(???) (2)基于插值的方法 (3)基于机器学习的...原创 2018-05-26 16:15:16 · 5648 阅读 · 6 评论 -
Adaptive General Scale Interpolation Based on Weighted Autoregressive Models论文总结
摘要: 考虑到自然图像的非平稳性,本文提出一种使用任意尺度因子的自适应尺度插值的算法。介绍: 考虑到自然图像在局部区域的不稳定性,提出了一种能适应任意的尺度因子的图像插值算法。如图所示,图像插值算法可以通过调整AR模型的组成和数据保真约束来最优化,新的AR模型由像素未知的HR邻域构建。 受weighted least-squares interpolations的影响,我们提出了一...原创 2018-06-04 16:25:34 · 297 阅读 · 0 评论 -
image super -resolution as sparse representation of raw image patches代码解读之字典训练
1、clear all; clc; close all;addpath(genpath('RegularizedSC'));TR_IMG_PATH = 'Data/Training';dict_size = 512; % dictionary sizelambda = 0.15; % sparsity regularization????...原创 2018-05-31 16:05:04 · 1172 阅读 · 0 评论 -
Compressive Sensing via Nonlocal Low-Rank Regularization论文总结
Abstract: In this paper, we propose a nonlocal low-rank regularization (NLR) approach toward exploiting structured sparsity and explore its application into CS of both photographic and MRI images. ...原创 2018-06-05 17:40:07 · 1585 阅读 · 3 评论 -
image super -resolution as sparse representation of raw image patches代码解读之超分辨率重建
杨建超教授公布的代码,字典已经训练好,不需要重新训练。可以直接运行进行超分辨率的重建。1、% =========================================================================% Simple demo codes for image super-resolution via sparse representation%% Re...原创 2018-05-31 17:18:15 · 3563 阅读 · 10 评论 -
GENERAL SCALE INTERPOLATION VIA CONTEXT-AWARE AUTOREGRESSIVE MODEL AND MULTIPLANAR CONSTRAINT论文总结
图像插值:图像插值是在基于模型框架下,从低分辨率图像生成高分辨率图像的过程,用以恢复图像中所丢失的信息。图像插值方法有:最近邻插值,双线性插值,双平方插值,双立方插值以及其他高阶方法。自回归模型:认为图像的像素点之间具有相关性,当前点的值可以有局部邻域的值来加权表示。 插值方法:Y是高分辨率图像。Yc是图像内部。Yb是图像边缘。 ...原创 2018-06-02 19:31:30 · 214 阅读 · 0 评论