Problem Description
题目给出一个有n个节点的有向图,求该有向图中长度为k的路径条数。方便起见,节点编号为1,2,…,n,用邻接矩阵表示该有向图。该有向图的节点数不少于2并且不超过500.
例如包含两个节点的有向图,图中有两条边1 → 2 ,2 → 1 。
长度为1的路径有两条:1 → 2 和 2 →1 ;
长度为2的路径有两条:1 → 2 → 1和2 → 1 → 2 ;
偷偷告诉你也无妨,其实这个图无论k取值多少 ( k > 0 ),长度为k的路径都是2条。
Input
多组输入,每组输入第一行是有向图中节点的数量即邻接矩阵的行列数n。接下来n行n列为该图的邻接矩阵。接下来一行是一个整数k.k小于30.
Output
输出一个整数,即为图中长度为k的路径的条数。
Sample Input
3 0 1 0 0 0 1 0 0 0 2
Sample Output
1
#include <iostream>
#include <bits/stdc++.h>
using namespace std;
int e[600][600],c[600][600],b[600][600];
int main()
{
int n,i,j,k,sum,p,q;
while(scanf("%d",&n)!=EOF)
{
memset(e,0,sizeof(e));
memset(c,0,sizeof(c));
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
scanf("%d",&e[i][j]);
c[i][j]=e[i][j];
}
}
scanf("%d",&k);
for(p=1;p<k;p++)
{
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
sum=0;
for(q=1;q<=n;q++)
{
sum+=c[i][q]*e[q][j];
}
b[i][j]=sum;
}
}
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
c[i][j]=b[i][j];
}
}
}
sum=0;
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
sum+=c[i][j];
}
}
printf("%d\n",sum);
}
return 0;
}