Hdu 5045 Contest (状态压缩dp)

Hdu 5045 Contest (状态压缩dp) 

题意:有N个同学共同解决M道问题,每道题只能由一个同学来解决,每次花费一分钟,并且有成功率P,不能再次修改答案,任何时候不能任意两个同学做的题目数目不能相差超过1道题,有多种策略,求所有策略里最大成功期望是多少?

    分析:最优化问题,用动态规划解决,由题意,每次做题时每个人都要轮到一次,然后状态清零,用二进制表示状态,即 00000->00100 ,做到11111时要变成00000,设dp[i][j]表示当前答到第i道题并且每个同学的做题状态为j时最大的总答对概率期望,那么转移方程为

dp[i][s]= max(dp[i][s], dp[i - 1][k] + p[j][i]);

其中s是当前i题时的状态,k是i-1题时的状态,而j就是当前要做的题,枚举j的值,j和k来更新s的值。

这里有一个初学者经常犯的错误,由于状态不能随意的转移(每次只有一个人做一道题目),所以要加入一些限制,设置dp数组为-1,表示不能访问的状态,这样在每次更新的时候,dp[i-1][k]就总是已经访问过的状态了。

AC代码如下:


#include<iostream>
#include<cstdio>
#include<sstream>
#include<cmath>
#include<cstring>
#include<string>
#include<vector>
#include<queue>
#include<algorithm>
#define INF 1<<27
#define eps 1e-9
#define LD long double
#define LL long long
#define CL(x,v); memset(x,v,sizeof(x));
const int maxn = 1005;
using namespace std;
double p[15][1005];// p[i][j] 表示 第i个同学答对第j个问题的概率
double dp[1005][1<<11];// dp[i][j]表示当前答到第i道题并且每个同学的做题状态为j时最大的总答对概率。
void solve(int n,int m)
{
	for (int i = 0; i <= m; i++) {
		for (int j = 0; j <= (1 << n); j++) {
			dp[i][j] = -1.0;
		}
	}
	dp[0][0] = 0;
	for (int i = 1; i <= m; i++)
	{
		for (int k = 0; k < (1 << n); k++)
		{
			if (dp[i-1][k] < 0)
				continue;
			for (int j = 1; j <= n; ++j)
			{
				if (k & 1 << (j - 1)) continue;
				int s = k | 1 << (j - 1);//s表示下一个状态
				if (s == (1 << n) - 1) s = 0;
				dp[i][s] = max(dp[i][s], dp[i - 1][k] + p[j][i]);
			}
		}
	}
}
int main()
{
#ifdef LOCAL
	freopen("data.txt", "r", stdin);
	//freopen("out.txt", "w", stdout);
#endif
	int T;
	scanf("%d",&T);
	for (int kase = 1; kase <= T;++kase)
	{
		int n, m;
		double ans = 0.0;
		scanf("%d%d", &n, &m);
		for (int i = 1; i <= n;++i)
		for (int j = 1; j <= m; ++j)
		{
			scanf("%lf", &p[i][j]);
		}
		solve(n, m);
		for (int i = 0; i <= (1 << n); i++) 
		{
			ans = max(ans, dp[m][i]);
		}
		printf("Case #%d: %.5lf\n", kase, ans);
	}
	return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值