决策制定在游戏AI中的应用
1. 引言
游戏AI的核心挑战之一是决策制定。无论是角色的动作选择,还是环境中的互动,AI都需要能够根据当前情况作出合理的决策。决策制定不仅影响游戏的趣味性和难度,还能极大地提升玩家的沉浸感。本文将深入探讨几种常见的决策机制,包括有限状态机(FSM)、模糊状态机(Fuzzy State Machine)、基于堆栈的有限状态机(Stack-Based FSM)和行为树(Behaviour Trees),并通过一个经典的《吃豆人》风格项目来展示这些理论的实际应用。
2. 有限状态机(Finite State Machine, FSM)
有限状态机(FSM)是一种从早期街机游戏就开始使用的决策机制。它通过定义一组离散的状态和状态之间的转换规则来管理游戏角色的不同行为。每个状态代表一个高层级的动作,例如“追逐”、“逃跑”或“返回基地”。
2.1 FSM的基本概念
在FSM中,每个状态通常对应一个特定的行为或动作。状态之间的转换是通过条件判断实现的,例如:
- 当幽灵被玩家吃掉时,它会从“追逐”状态转换到“返回基地”状态。
- 当幽灵到达基地后,它会从“返回基地”状态转换到“等待复活”状态。
FSM可以通过流程图清晰地表示,如图6.1所示:
graph TD;
A[RUN] --> B[JUMP];
B --> C[CRAWL];
C --> A;
style A fill:#f96,stroke:#