Acwing173. 矩阵距离

给定一个 N 行 M 列的 01 矩阵 A,A[i][j]与 A[k][l]之间的曼哈顿距离定义为:

dist(A[i][j],A[k][l])=|i−k|+|j−l|

输出一个 N 行 M 列的整数矩阵 BB,其中:

B[i][j]=min1≤x≤N,1≤y≤M,A[x][y]=1dist(A[i][j],A[x][y])

输入格式

第一行两个整数 N,M

接下来一个 N 行 M 列的 01 矩阵,数字之间没有空格。

输出格式

一个 N 行 M 列的矩阵 B,相邻两个整数之间用一个空格隔开。

数据范围

1≤N,M≤1000

输入样例:

3 4
0001
0011
0110

输出样例:

3 2 1 0
2 1 0 0
1 0 0 1

【思路及代码】

*多源BFS问题,主要在找到BFS的起点,将所有的起点放入到队列当中,再开始搜索。

#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> PII;
const int N=1010;
char a[N][N];
bool st[N][N];
int n,m,dist[N][N];
int d[5]={-1,0,1,0,-1};
void bfs()
{
	queue<PII> q;
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=m;j++)
		{
			if(a[i][j]=='1')
			{
				q.push({i,j});
				dist[i][j]=0;
				st[i][j]=1;
			}
		}
	}
	while(q.size())
	{
		PII t=q.front();
		q.pop();
		int x1=t.first,y1=t.second;
		for(int i=0;i<4;i++)
		{
			int xx=x1+d[i],yy=y1+d[i+1];
			if(xx>=1&&xx<=n&&yy>=1&&yy<=m&&st[xx][yy]==0)
			{
				st[xx][yy]=true;
				dist[xx][yy]=min(dist[x1][y1]+1,dist[xx][yy]);
				q.push({xx,yy});
			}
		}
	}
}
int main()
{
	memset(dist,0x3f,sizeof dist);
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=m;j++)
		{
			cin>>a[i][j];
		}
	}
	bfs();
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=m;j++)
			cout<<dist[i][j]<<" ";
		cout<<endl;
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值