房租预测--清洗数据

数据清洗是数据分析工作中不可缺少的步骤,这是因为数据清洗能够处理掉肮脏数据,如果不清洗数据的话,那么数据分析的结果准确率会变得极低。

一、缺失值分析及处理

1.缺失值出现的原因分析

机械原因是由于机械原因导致的数据收集或保存的失败造成的数据缺失,比如数据存储的失败,存储器损坏,机械故障导致某段时间数据未能收集(对于定时数据采集而言)。人为原因是由于人的主观失误、历史局限或有意隐瞒造成的数据缺失,比如,在市场调查中被访人拒绝透露相关问题的答案,或者回答的问题是无效的,数据录入人员失误漏录了数据。

2. 采取合适的方式对缺失值进行填充

常用的处理方法有:估算,整例删除,变量删除和成对删除。
1.缺失值处理:

  • 缺失值的处理手段大体可以分为:删除、填充、映射到高维(当做类别处理)。
  • 根据任务一,直接找到的缺失值情况是pu和pv;
  • 但是,根据特征nunique分布的分析,可以发现rentType存在"–"的情况,这也算是一种缺失值。
  • 此外,诸如rentType的"未知方式";houseToward的"暂无数据"等,本质上也算是一种缺失值,但是对于这些缺失方式,我们可以把它当做是特殊的一类处理,而不需要去主动修改或填充值。
  • 将rentType的"–"转换成"未知方式"类别;
  • pv/pu的缺失值用均值填充;
  • buildYear存在"暂无信息",将其用众数填充。

2.转换object类型数据:

  • 这里直接采用LabelEncoder的方式编码,详细的编码方式请自行查阅相关资料学习。

3.时间字段的处理:

  • buildYear由于存在"暂无信息",所以需要主动将其转换int类型;
  • tradeTime,将其分割成月和日。

4.删除无关字段:

  • ID是唯一码,建模无用,所以直接删除;
  • city只有一个SH值,也直接删除;
  • tradeTime已经分割成月和日,删除原来字段
def preprocessingData(data):
    # 填充缺失值
    data['rentType'][data['rentType'] == '--'] = '未知方式'
    
    # 转换object类型数据
    columns = ['rentType','communityName','houseType', 'houseFloor', 'houseToward', 'houseDecoration',  'region', 'plate']
    
    for feature in columns:
        data[feature] = LabelEncoder().fit_transform(data[feature])

    # 将buildYear列转换为整型数据
    buildYearmean = pd.DataFrame(data[data['buildYear'] != '暂无信息']['buildYear'].mode())
    data.loc[data[data['buildYear'] == '暂无信息'].index, 'buildYear'] = buildYearmean.iloc[0, 0]
    data['buildYear'] = data['buildYear'].astype('int')

    # 处理pv和uv的空值
    data['pv'].fillna(data['pv'].mean(), inplace=True)
    data['uv'].fillna(data['uv'].mean(), inplace=True)
    data['pv'] = data['pv'].astype('int')
    data['uv'] = data['uv'].astype('int')

    # 分割交易时间
    def month(x):
        month = int(x.split('/')[1])
        return month
    def day(x):
        day = int(x.split('/')[2])
        return day
    data['month'] = data['tradeTime'].apply(lambda x: month(x))
    data['day'] = data['tradeTime'].apply(lambda x: day(x))
    
    # 去掉部分特征
    data.drop('city', axis=1, inplace=True)
    data.drop('tradeTime', axis=1, inplace=True)
    data.drop('ID', axis=1, inplace=True)
    return data

data_train = preprocessingData(data_train)

二、异常值分析及处理

这里主要针对area和tradeMoney两个维度处理。
针对tradeMoney,这里采用的是IsolationForest模型自动处理;
针对areahetotalFloor是主观+数据可视化的方式得到的结果

# clean data
def IF_drop(train):
    IForest = IsolationForest(contamination=0.01)
    IForest.fit(train["tradeMoney"].values.reshape(-1,1))
    y_pred = IForest.predict(train["tradeMoney"].values.reshape(-1,1))
    drop_index = train.loc[y_pred==-1].index
    print(drop_index)
    train.drop(drop_index,inplace=True)
    return train

data_train = IF_drop(data_train)


结果是:
Int64Index([   62,    69,   128,   131,   246,   261,   266,   297,   308,
              313,
            ...
            39224, 39228, 39319, 39347, 39352, 39434, 39563, 41080, 41083,
            41233],
           dtype='int64', length=401)

def dropData(train):
    # 丢弃部分异常值
    train = train[train.area <= 200]
    train = train[(train.tradeMoney <=16000) & (train.tradeMoney >=700)]
    train.drop(train[(train['totalFloor'] == 0)].index, inplace=True)
    return train  
#数据集异常值处理
data_train = dropData(data_train)

# 处理异常值后再次查看面积和租金分布图
plt.figure(figsize=(15,5))
sns.boxplot(data_train.area)
plt.show()
plt.figure(figsize=(15,5))
sns.boxplot(data_train.tradeMoney),
plt.show()

结果是:
在这里插入图片描述

在这里插入图片描述

三、深度清洗

分析每一个communityName、city、region、plate的数据分布并对其进行数据清洗。

def cleanData(data):
    data.drop(data[(data['region']=='RG00001') & (data['tradeMoney']<1000)&(data['area']>50)].index,inplace=True)
    data.drop(data[(data['region']=='RG00001') & (data['tradeMoney']>25000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00001') & (data['area']>250)&(data['tradeMoney']<20000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00001') & (data['area']>400)&(data['tradeMoney']>50000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00001') & (data['area']>100)&(data['tradeMoney']<2000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00002') & (data['area']<100)&(data['tradeMoney']>60000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00003') & (data['area']<300)&(data['tradeMoney']>30000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00003') & (data['tradeMoney']<500)&(data['area']<50)].index,inplace=True)
    data.drop(data[(data['region']=='RG00003') & (data['tradeMoney']<1500)&(data['area']>100)].index,inplace=True)
    data.drop(data[(data['region']=='RG00003') & (data['tradeMoney']<2000)&(data['area']>300)].index,inplace=True)
    data.drop(data[(data['region']=='RG00003') & (data['tradeMoney']>5000)&(data['area']<20)].index,inplace=True)
    data.drop(data[(data['region']=='RG00003') & (data['area']>600)&(data['tradeMoney']>40000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00004') & (data['tradeMoney']<1000)&(data['area']>80)].index,inplace=True)
    data.drop(data[(data['region']=='RG00006') & (data['tradeMoney']<200)].index,inplace=True)
    data.drop(data[(data['region']=='RG00005') & (data['tradeMoney']<2000)&(data['area']>180)].index,inplace=True)
    data.drop(data[(data['region']=='RG00005') & (data['tradeMoney']>50000)&(data['area']<200)].index,inplace=True)
    data.drop(data[(data['region']=='RG00006') & (data['area']>200)&(data['tradeMoney']<2000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00007') & (data['area']>100)&(data['tradeMoney']<2500)].index,inplace=True)
    data.drop(data[(data['region']=='RG00010') & (data['area']>200)&(data['tradeMoney']>25000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00010') & (data['area']>400)&(data['tradeMoney']<15000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00010') & (data['tradeMoney']<3000)&(data['area']>200)].index,inplace=True)
    data.drop(data[(data['region']=='RG00010') & (data['tradeMoney']>7000)&(data['area']<75)].index,inplace=True)
    data.drop(data[(data['region']=='RG00010') & (data['tradeMoney']>12500)&(data['area']<100)].index,inplace=True)
    data.drop(data[(data['region']=='RG00004') & (data['area']>400)&(data['tradeMoney']>20000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00008') & (data['tradeMoney']<2000)&(data['area']>80)].index,inplace=True)
    data.drop(data[(data['region']=='RG00009') & (data['tradeMoney']>40000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00009') & (data['area']>300)].index,inplace=True)
    data.drop(data[(data['region']=='RG00009') & (data['area']>100)&(data['tradeMoney']<2000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00011') & (data['tradeMoney']<10000)&(data['area']>390)].index,inplace=True)
    data.drop(data[(data['region']=='RG00012') & (data['area']>120)&(data['tradeMoney']<5000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00013') & (data['area']<100)&(data['tradeMoney']>40000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00013') & (data['area']>400)&(data['tradeMoney']>50000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00013') & (data['area']>80)&(data['tradeMoney']<2000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00014') & (data['area']>300)&(data['tradeMoney']>40000)].index,inplace=True)
    data.drop(data[(data['region']=='RG00014') & (data['tradeMoney']<1300)&(data['area']>80)].index,inplace=True)
    data.drop(data[(data['region']=='RG00014') & (data['tradeMoney']<8000)&(data['area']>200)].index,inplace=True)
    data.drop(data[(data['region']=='RG00014') & (data['tradeMoney']<1000)&(data['area']>20)].index,inplace=True)
    data.drop(data[(data['region']=='RG00014') & (data['tradeMoney']>25000)&(data['area']>200)].index,inplace=True)
    data.drop(data[(data['region']=='RG00014') & (data['tradeMoney']<20000)&(data['area']>250)].index,inplace=True)
    data.drop(data[(data['region']=='RG00005') & (data['tradeMoney']>30000)&(data['area']<100)].index,inplace=True)
    data.drop(data[(data['region']=='RG00005') & (data['tradeMoney']<50000)&(data['area']>600)].index,inplace=True)
    data.drop(data[(data['region']=='RG00005') & (data['tradeMoney']>50000)&(data['area']>350)].index,inplace=True)
    data.drop(data[(data['region']=='RG00006') & (data['tradeMoney']>4000)&(data['area']<100)].index,inplace=True)
    data.drop(data[(data['region']=='RG00006') & (data['tradeMoney']<600)&(data['area']>100)].index,inplace=True)
    data.drop(data[(data['region']=='RG00006') & (data['area']>165)].index,inplace=True)
    data.drop(data[(data['region']=='RG00012') & (data['tradeMoney']<800)&(data['area']<30)].index,inplace=True)
    data.drop(data[(data['region']=='RG00007') & (data['tradeMoney']<1100)&(data['area']>50)].index,inplace=True)
    data.drop(data[(data['region']=='RG00004') & (data['tradeMoney']>8000)&(data['area']<80)].index,inplace=True)
    data.loc[(data['region']=='RG00002')&(data['area']>50)&(data['rentType']=='合租'),'rentType']='整租'
    data.loc[(data['region']=='RG00014')&(data['rentType']=='合租')&(data['area']>60),'rentType']='整租'
    data.drop(data[(data['region']=='RG00008')&(data['tradeMoney']>15000)&(data['area']<110)].index,inplace=True)
    data.drop(data[(data['region']=='RG00008')&(data['tradeMoney']>20000)&(data['area']>110)].index,inplace=True)
    data.drop(data[(data['region']=='RG00008')&(data['tradeMoney']<1500)&(data['area']<50)].index,inplace=True)
    data.drop(data[(data['region']=='RG00008')&(data['rentType']=='合租')&(data['area']>50)].index,inplace=True)
    data.drop(data[(data['region']=='RG00015') ].index,inplace=True)
    data.reset_index(drop=True, inplace=True)
    return data

data_train = cleanData(data_train)

能力有限,深度清洗不是很理解,只能参考大佬的了

参考的文章链接:https://blog.csdn.net/ch18328071580/article/details/103903420

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值