BJTU 找区间

题面描述

给定n个数 a1,…,an,高老师想了解al,…,ar中有多少对相邻元素值相同。高老师把这个数目定义为区间[l,r]的价值,用v[l,r]表示。例如 1,1,1,2,2 这五个数所组成的区间的价值为3。

现在高老师想知道在所有的v[l,r] (1≤l≤r≤n)中,第k小的值是多少。但高老师要和女朋友出去玩,于是他把这个问题甩给了你,请你帮他解决一下。

输入数据

第一行有一个整数t(1≤t≤30),表示有t组数据。

对于每组数据:

第一行有两个整数n,k (1≤n≤2000,1≤k≤n(n+1)/2);

第二行有n个整数a1,…,an (1≤ai≤109)。

输出数据

对于每组数据:

输出一个整数,表示第 k小的值。

样例输入

2
4 7
1 1 2 3
3 5
100 100 100

样例输出

0
1

    这道题目与以前的区间价值老题目类似,但是这里的区间价值为区间内序列中相邻元素相等的个数,对于一个长度为n的序列,一共有n*(n+1)/2个区间,区间价值可能是0到n-1,求第k小的数,也就是将区间价值从小到大排列取第k个,我们这里区间价值可能的结果0—n-1用二分法,如果二分发左半部分的价值对应的区间数总和大于等于k,就说明第k个元素的价值在左半部分,反之则在右半部分,计算区间数总和的时候用尺取法,最终将时间复杂度降到O(nlogn),终于AC了。

    有哪里不对的欢迎指出,第一次发,多多包涵,以后还会更一些平时写的有意思的小代码。

#include <iostream>
#include <algorithm>
using namespace std;
int getValue(int,int,int []);
int getsum(int m,int num[],int len)
{
    int sum=0;
    int en=0;
    int thisValue=0;
    for(int i=0; i<len; i++)
    {
        while(en<len)
        {
            if(thisValue<=m)
            {
                en++;
                thisValue+=num[en-1];
            }
            else
                break;
        }
        sum+=en-i;
        thisValue-=num[i];
     }
    return sum;
 }
int main()
{
    int T;
    cin>>T;
    for(int i=0; i<T; i++)
    {
        int n,k;
        cin>>n>>k;
        int a[n];
        int Nnum[n];
        for(int j=0; j<n; j++)
        {
            cin>>a[j];
            if(j>0&&a[j]==a[j-1])
            {
                Nnum[j-1]=1;
            }
            else
            {
                if(j>0)
                    Nnum[j-1]=0;
            }
}
        int left=0;
        int right=n-1;
        while(left<right)
        {
            int m=(left+right)/2;
            if(getsum(m,Nnum,n)>=k)
                right=m;
            else
                left=m+1;
}
            cout<<left<<endl;   }
                return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值