2018年全国多校算法寒假训练营练习比赛(第三场)- A - 不凡的夫夫(斯特林公式)

链接:https://www.nowcoder.net/acm/contest/75/A
来源:牛客网

题目描述

夫夫有一天对一个数有多少位数感兴趣,但是他又不想跟凡夫俗子一样,
所以他想知道给一个整数n,求n!的在8进制下的位数是多少位。

输入描述:

第一行是一个整数t(0<t<=1000000)(表示t组数据)
接下来t行,每一行有一个整数n(0<=n<=10000000)

输出描述:

输出n!在8进制下的位数。


求n!的位数有以下两种求法

    1. 利用 n! = 8^k 位数 = k + 1

两端同时取对数 得 log(n!) = k * log(10)
k = (log(1) + log(2) + .. + log(n)) / log(10)


    2. 利用斯特林公式

log(n!) = log(sqrt(2*π*n) * (n/e)^n)
= log(sqrt(2*π*n)) + n * (log(n) - log(e))
= k * log(8)

k = (log(sqrt(2*π*n)) + n * (log(n) - log(e))) / log(8)



#include <iostream>
#include <string.h>
#include <stdio.h>
#include <math.h>
using namespace std;
#define LL long long
const double PI = acos(-1.0);
LL T,n;
int main()
{
    scanf("%lld",&T);
    while(T--){
        scanf("%lld",&n);
		if(n==0) printf("1\n");
        else printf("%lld\n",(LL)((log10(sqrt(2*PI*n)) + n * ( log10(n) - log10(exp(1.0)) )) / log10(8) + 1));
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值