链接:https://www.nowcoder.net/acm/contest/75/A
来源:牛客网
题目描述
夫夫有一天对一个数有多少位数感兴趣,但是他又不想跟凡夫俗子一样,
所以他想知道给一个整数n,求n!的在8进制下的位数是多少位。
所以他想知道给一个整数n,求n!的在8进制下的位数是多少位。
输入描述:
第一行是一个整数t(0<t<=1000000)(表示t组数据) 接下来t行,每一行有一个整数n(0<=n<=10000000)
输出描述:
输出n!在8进制下的位数。
求n!的位数有以下两种求法
1. 利用 n! = 8^k 位数 = k + 1
两端同时取对数 得 log(n!) = k * log(10)
k = (log(1) + log(2) + .. + log(n)) / log(10)
2. 利用斯特林公式
log(n!) = log(sqrt(2*π*n) * (n/e)^n)
= log(sqrt(2*π*n)) + n * (log(n) - log(e))
= k * log(8)
k = (log(sqrt(2*π*n)) + n * (log(n) - log(e))) / log(8)
#include <iostream> #include <string.h> #include <stdio.h> #include <math.h> using namespace std; #define LL long long const double PI = acos(-1.0); LL T,n; int main() { scanf("%lld",&T); while(T--){ scanf("%lld",&n); if(n==0) printf("1\n"); else printf("%lld\n",(LL)((log10(sqrt(2*PI*n)) + n * ( log10(n) - log10(exp(1.0)) )) / log10(8) + 1)); } return 0; }