检查三个布尔值中是否至少有两个是真的

本文探讨了如何在Java中检查三个布尔变量a、b和c至少有两个为真的问题。提供了多种解决方案,包括使用逻辑运算符的组合以及考虑性能影响。讨论了不同实现方式的可读性和效率,强调了代码的可读性应是首要目标。
摘要由CSDN通过智能技术生成

本文翻译自:Check if at least two out of three booleans are true

An interviewer recently asked me this question: given three boolean variables, a, b, and c, return true if at least two out of the three are true. 一位采访者最近问我这个问题:给定三个布尔变量a,b和c,如果三个中至少有两个为真,则返回true。

My solution follows: 我的解决方案是:

boolean atLeastTwo(boolean a, boolean b, boolean c) {
    if ((a && b) || (b && c) || (a && c)) {
        return true;
    }
    else{
        return false;
    }
}

He said that this can be improved further, but how? 他说这可以进一步改善,但如何?


#1楼

参考:https://stackoom.com/question/CuEA/检查三个布尔值中是否至少有两个是真的


#2楼

Rather than writing: 而不是写:

if (someExpression) {
    return true;
} else {
    return false;
}

Write: 写:

return someExpression;

As for the expression itself, something like this: 至于表达本身,这样的事情:

boolean atLeastTwo(boolean a, boolean b, boolean c) {
    return a ? (b || c) : (b && c);
}

or this (whichever you find easier to grasp): 或者这个(无论你发现哪个更容易掌握):

boolean atLeastTwo(boolean a, boolean b, boolean c) {
    return a && (b || c) || (b && c);
}

It tests a and b exactly once, and c at most once. 它只测试ab一次,最多c次测试一次。

References 参考


#3楼

Why not implement it literally? 为什么不按字面意思实现呢? :) :)

(a?1:0)+(b?1:0)+(c?1:0) >= 2

In C you could just write a+b+c >= 2 (or !!a+!!b+!!c >= 2 to be very safe). 在C中你可以写a+b+c >= 2 (或!!a+!!b+!!c >= 2非常安全)。

In response to TofuBeer 's comparison of java bytecode, here is a simple performance test: 为了回应TofuBeer对java字节码的比较,这里有一个简单的性能测试:

class Main
{
    static boolean majorityDEAD(boolean a,boolean b,boolean c)
    {
        return a;
    }

    static boolean majority1(boolean a,boolean b,boolean c)
    {
        return a&&b || b&&c || a&&c;
    }

    static boolean majority2(boolean a,boolean b,boolean c)
    {
        return a ? b||c : b&&c;
    }

    static boolean majority3(boolean a,boolean b,boolean c)
    {
        return a&b | b&c | c&a;
    }

    static boolean majority4(boolean a,boolean b,boolean c)
    {
        return (a?1:0)+(b?1:0)+(c?1:0) >= 2;
    }

    static int loop1(boolean[] data, int i, int sz1, int sz2)
    {
        int sum = 0;
        for(int j=i;j<i+sz1;j++)
        {
            for(int k=j;k<j+sz2;k++)
            {
                sum += majority1(data[i], data[j], data[k])?1:0; 
                sum += majority1(data[i], data[k], data[j])?1:0; 
                sum += majority1(data[j], data[k], data[i])?1:0; 
                sum += majority1(data[j], data[i], data[k])?1:0; 
                sum += majority1(data[k], data[i], data[j])?1:0; 
                sum += majority1(data[k], data[j], data[i])?1:0; 
            }
        }
        return sum;
    }

    static int loop2(boolean[] data, int i, int sz1, int sz2)
    {
        int sum = 0;
        for(int j=i;j<i+sz1;j++)
        {
            for(int k=j;k<j+sz2;k++)
            {
                sum += majority2(data[i], data[j], data[k])?1:0; 
                sum += majority2(data[i], data[k], data[j])?1:0; 
                sum += majority2(data[j], data[k], data[i])?1:0; 
                sum += majority2(data[j], data[i], data[k])?1:0; 
                sum += majority2(data[k], data[i], data[j])?1:0; 
                sum += majority2(data[k], data[j], data[i])?1:0; 
            }
        }
        return sum;
    }

    static int loop3(boolean[] data, int i, int sz1, int sz2)
    {
        int sum = 0;
        for(int j=i;j<i+sz1;j++)
        {
            for(int k=j;k<j+sz2;k++)
            {
                sum += majority3(data[i], data[j], data[k])?1:0; 
                sum += majority3(data[i], data[k], data[j])?1:0; 
                sum += majority3(data[j], data[k], data[i])?1:0; 
                sum += majority3(data[j], data[i], data[k])?1:0; 
                sum += majority3(data[k], data[i], data[j])?1:0; 
                sum += majority3(data[k], data[j], data[i])?1:0; 
            }
        }
        return sum;
    }

    static int loop4(boolean[] data, int i, int sz1, int sz2)
    {
        int sum = 0;
        for(int j=i;j<i+sz1;j++)
        {
            for(int k=j;k<j+sz2;k++)
            {
                sum += majority4(data[i], data[j], data[k])?1:0; 
                sum += majority4(data[i], data[k], data[j])?1:0; 
                sum += majority4(data[j], data[k], data[i])?1:0; 
                sum += majority4(data[j], data[i], data[k])?1:0; 
                sum += majority4(data[k], data[i], data[j])?1:0; 
                sum += majority4(data[k], data[j], data[i])?1:0; 
            }
        }
        return sum;
    }

    static int loopDEAD(boolean[] data, int i, int sz1, int sz2)
    {
        int sum = 0;
        for(int j=i;j<i+sz1;j++)
        {
            for(int k=j;k<j+sz2;k++)
            {
                sum += majorityDEAD(data[i], data[j], data[k])?1:0; 
                sum += majorityDEAD(data[i], data[k], data[j])?1:0; 
                sum += majorityDEAD(data[j], data[k], data[i])?1:0; 
                sum += majorityDEAD(data[j], data[i], data[k])?1:0; 
                sum += majorityDEAD(data[k], data[i], data[j])?1:0; 
                sum += majorityDEAD(data[k], data[j], data[i])?1:0; 
            }
        }
        return sum;
    }

    static void work()
    {
        boolean [] data = new boolean [10000];
        java.util.Random r = new java.util.Random(0);
        for(int i=0;i<data.length;i++)
            data[i] = r.nextInt(2) > 0;
        long t0,t1,t2,t3,t4,tDEAD;
        int sz1 = 100;
        int sz2 = 100;
        int sum = 0;

        t0 = System.currentTimeMillis();

        for(int i=0;i<data.length-sz1-sz2;i++)
            sum += loop1(data, i, sz1, sz2);

        t1 = System.currentTimeMillis();

        for(int i=0;i<data.length-sz1-sz2;i++)
            sum += loop2(data, i, sz1, sz2);

        t2 = System.currentTimeMillis();

        for(int i=0;i<data.length-sz1-sz2;i++)
            sum += loop3(data, i, sz1, sz2);

        t3 = System.currentTimeMillis();

        for(int i=0;i<data.length-sz1-sz2;i++)
            sum += loop4(data, i, sz1, sz2);

        t4 = System.currentTimeMillis();

        for(int i=0;i<data.length-sz1-sz2;i++)
            sum += loopDEAD(data, i, sz1, sz2);

        tDEAD = System.currentTimeMillis();

        System.out.println("a&&b || b&&c || a&&c : " + (t1-t0) + " ms");
        System.out.println("   a ? b||c : b&&c   : " + (t2-t1) + " ms");
        System.out.println("   a&b | b&c | c&a   : " + (t3-t2) + " ms");
        System.out.println("   a + b + c >= 2    : " + (t4-t3) + " ms");
        System.out.println("       DEAD          : " + (tDEAD-t4) + " ms");
        System.out.println("sum: "+sum);
    }

    public static void main(String[] args) throws InterruptedException
    {
        while(true)
        {
            work();
            Thread.sleep(1000);
        }
    }
}

This prints the following on my machine (running Ubuntu on Intel Core 2 + sun java 1.6.0_15-b03 with HotSpot Server VM (14.1-b02, mixed mode)): 这将在我的机器上打印以下内容(使用HotSpot Server VM(14.1-b02,混合模式)在Intel Core 2 + sun java 1.6.0_15-b03上运行Ubuntu):

First and second iterations: 第一次和第二次迭代:

a&&b || b&&c || a&&c : 1740 ms
   a ? b||c : b&&c   : 1690 ms
   a&b | b&c | c&a   : 835 ms
   a + b + c >= 2    : 348 ms
       DEAD          : 169 ms
sum: 1472612418

Later iterations: 后来的迭代:

a&&b || b&&c || a&&c : 1638 ms
   a ? b||c : b&&c   : 1612 ms
   a&b | b&c | c&a   : 779 ms
   a + b + c >= 2    : 905 ms
       DEAD          : 221 ms

I wonder, what could java VM do that degrades performance over time for (a + b + c >= 2) case. 我想知道,对于(a + b + c> = 2)情况,java VM可以做什么会降低性能随时间的变化。

And here is what happens if I run java with a -client VM switch: 如果我使用-client VM开关运行java会发生什么:

a&&b || b&&c || a&&c : 4034 ms
   a ? b||c : b&&c   : 2215 ms
   a&b | b&c | c&a   : 1347 ms
   a + b + c >= 2    : 6589 ms
       DEAD          : 1016 ms

Mystery... 神秘...

And if I run it in GNU Java Interpreter , it gets almost 100 times slower, but the a&&b || b&&c || a&&c 如果我在GNU Java Interpreter中运行它,它会慢几百倍,但是a&&b || b&&c || a&&c a&&b || b&&c || a&&c a&&b || b&&c || a&&c version wins then. 然后a&&b || b&&c || a&&c版本获胜。

Results from Tofubeer with the latest code running OS X: 使用运行OS X的最新代码从Tofubeer获得的结果:

a&&b || b&&c || a&&c : 1358 ms
   a ? b||c : b&&c   : 1187 ms
   a&b | b&c | c&a   : 410 ms
   a + b + c >= 2    : 602 ms
       DEAD          : 161 ms

Results from Paul Wagland with a Mac Java 1.6.0_26-b03-383-11A511 来自Paul Wagland的Mac Java 1.6.0_26-b03-383-11A511的结果

a&&b || b&&c || a&&c : 394 ms 
   a ? b||c : b&&c   : 435 ms
   a&b | b&c | c&a   : 420 ms
   a + b + c >= 2    : 640 ms
   a ^ b ? c : a     : 571 ms
   a != b ? c : a    : 487 ms
       DEAD          : 170 ms

#4楼

The most obvious set of improvements are: 最明显的改进是:

// There is no point in an else if you already returned.
boolean atLeastTwo(boolean a, boolean b, boolean c) {
    if ((a && b) || (b && c) || (a && c)) {
        return true;
    }
    return false;
}

and then 然后

// There is no point in an if(true) return true otherwise return false.
boolean atLeastTwo(boolean a, boolean b, boolean c) {
    return ((a && b) || (b && c) || (a && c));
}

But those improvements are minor. 但这些改进很小。


#5楼

You don't need to use the short circuiting forms of the operators. 您不需要使用运算符的短路形式。

return (a & b) | (b & c) | (c & a);

This performs the same number of logic operations as your version, however is completely branchless. 这将执行与您的版本相同数量的逻辑操作,但是完全无分支。


#6楼

Readability should be the goal. 可读性应该是目标。 Someone who reads the code must understand your intent immediately. 阅读代码的人必须立即理解您的意图。 So here is my solution. 所以这是我的解决方案。

int howManyBooleansAreTrue =
      (a ? 1 : 0)
    + (b ? 1 : 0)
    + (c ? 1 : 0);

return howManyBooleansAreTrue >= 2;
### 1XJTLU创业学院(太仓)封面页 **模块代码和名称** | **DTS102TC 使用C++编程** ---|--- 学校名称 | 人工智能与先进计算学院 作业标题 | 课程作业1(个人评估) 提交截止日期 | 2024年10月18日星期五北京时间下午5点(UTC+8) 最终字数 | 不适用 是否同意大学将您的作品匿名用于教学目的,请在此处填写“是”。 | 如果您同意大学将您的作品匿名用于教学目的,请在此处填写“是”。 我已阅读并理解了大学关于抄袭、合谋和伪造数据的政策(可在在线学习商城获取)。参考此政策,我声明: - 我的作品没有任何抄袭和/或合谋为。 - 我的作品没有虚构的数据。 通过将我的作业上传到在线学习商城,我正式声明上述所有信息均真实无误。 ### 打分 —— 教师专用 **学号** | | ---|---|--- 评分阶段 | 评分阶段 | 批改人代码 | 学习成果达成情况(F/P/M/D)(请适当修改) | 最终得分 初评 —— 红笔 | 初评 —— 红笔 | 原始分数已被接受 | 复审 —— 绿笔 | 复审 —— 绿笔 | IM 签字 | (请圈选合适项): Y / N 数据录入和分数计算已由另一教师检查(请圈选): Y 第二评阅人如需 —— 绿笔 | 第二评阅人如需 —— 绿笔 | 可能的学术违规(请勾选合适项) ### 学术办公室专用 接收日期 | 晚交天数 | 晚交罚分 | ☐ 类别A | ☐ 类别A | 总学术违规罚分(A/B/C/D/E,请适当修改) _________________ ---|---|---|---|---|--- | ☐ 类别B | ☐ 类别B | 总学术违规罚分(A/B/C/D/E,请适当修改) _________________ | ☐ 类别C | ☐ 类别C | 总学术违规罚分(A/B/C/D/E,请适当修改) _________________ | ☐ 类别D | ☐ 类别D | 总学术违规罚分(A/B/C/D/E,请适当修改) _________________ | ☐ 类别E | ☐ 类别E | 总学术违规罚分(A/B/C/D/E,请适当修改) _________________ ### DTS102TC 使用C++编程 课程作业1(个人项目评估) **截止日期**: 2024年10月18日星期五北京时间下午5点(UTC+8) **占总成绩比例**: 50% **最高分**: 100分(100% 个人成绩) #### 考核目标: A. 展示对C++编程语言基本原理的知识和理解。 B. 展示对软件开发过程基本知识的理解。 #### 迟交政策: 每超过一个工作日扣总分的5%,最多扣除五个工作日。 #### 注意事项: - 请仔细阅读课程作业说明和要求。不遵循这些说明和要求可能导致失分。 - 作业必须使用MS Word编辑并转换成PDF文档,并通过在线学习商城提交至Gradescope。仅接受电子提交,不接受纸质提交。所有提交的文档应为英文。 - 提交后请下载文件并确认其可读性。文件在上传过程可能因网络连接缓慢等原因而损坏,但学生有责任确保提交的功能性和正确性。 - 请从在线学习商城下载源代码模板。不要更改每个代码脚本的文件名。 - 严格遵守学术诚信政策。 ### 概述 本次任务的目的是获得C++编程和软件开发技能的经验。您需要编写C++程序来解决每个问题。对于每个问题,您需要编写代码以显示与示例运相同的结果。提交代码至Gradescope进测试。此外,您还需要在报告为每个问题写一段简短的描述,分析方法并讨论结果及测试用例。代码质量,如变量命名规则和函数注释,也将被评估。 ### 问题 1. 金融应用:未来投资价值(10分) 编写一个程序,输入投资额、年利率和年限,计算并显示未来投资价值,公式如下: \[ \text{futureInvestmentValue} = \text{investmentAmount} \times (1 + \text{monthlyInterestRate})^{(\text{numberOfYears} \times 12)} \] 例如,如果您输入金额1000.56,年利率4.25%,年限1年,则未来投资价值为1043.92美元。 **示例运** ``` 请输入投资额:1000.56 请输入年利率百分比:4.25 请输入年限:1 累积值为:1043.92 ``` ### 问题 2. 科学:一周的某一天(10分) Zeller的同余算法是由Christian Zeller开发的,用于计算一周的某一天。公式如下: \[ h = (q + \left\lfloor \frac{13(m+1)}{5} \right\rfloor + K + \left\lfloor \frac{K}{4} \right\rfloor + \left\lfloor \frac{J}{4} \right\rfloor - 2J) \mod 7 \] 其: - \( h \) 是一周的某一天(0: 星期六,1: 星期日,2: 星期一,3: 星期二,4: 星期三,5: 星期四,6: 星期五)。 - \( q \) 是月份的某一天。 - \( m \) 是月份(3: 3月,4: 4月,...,12: 12月)。1月和2月被视为上一年的第13月和第14月。 - \( j \) 是年份除以100的商。 - \( k \) 是世纪年份(即年份模100)。 注意:所有除法都执整数除法。 编写一个程序,输入年份、月份和月份的某一天,显示一周的某一天。 **示例运 1** ``` 请输入年份(例如2012):2015 请输入月份(1-12):1 请输入月份的某一天(1-31):25 星期几是:星期日 ``` **示例运 2** ``` 请输入年份(例如2012):2012 请输入月份(1-12):5 请输入月份的某一天(1-31):12 星期几是:星期六 ``` **提示**:1月和2月在公式分别视为13月和14月,因此需要将用户输入的1转换为13,2转换为14,并将年份改为前一年。 ### 问题 3. 排序三个城市(10分) 编写一个程序,输入三个城市名称,并按字母顺序升序排列。城市名称可以包含空格。 **示例运** ``` 请输入第一个城市:上海 请输入第二个城市:苏州 请输入第三个城市:北京 按字母顺序排列的三个城市是:北京 上海 苏州 ``` ### 问题 4. 验证密码(10分) 某些网站对密码有特定的规则。假设密码规则如下: - 密码至少要有八个字符。 - 密码只能包含字母和数字。 - 密码至少要包含两个数字。 编写一个程序,输入密码并显示有效密码或无效密码。 **示例运** ``` 请输入密码字符串:DTS102TC 有效密码! 请输入密码字符串:C++ Programming 无效密码! ``` ### 问题 5. 代数:解2×2线性方程组(15分) 您可以使用克拉默法则解以下2×2线性方程组: 编写一个具有以下头文件的函数: ```cpp void solveEquation(double a, double b, double c, double d, double e, double f, double& x, double& y, bool& isSolvable) ``` 如果 \( ad - bc \) 为0,方程无解且 `isSolvable` 应为 `false`。 编写一个程序,输入 \( a, b, c, d, e, f \),并显示结果。如果 \( ad - bc \) 为0,报告“方程无解”。 **示例运** ``` 请输入 a, b, c, d, e, f:9.0 4.0 3.0 -5.0 -6.0 -21.0 x 是 -2.0 和 y 是 3.0 请输入 a, b, c, d, e, f:1.0 2.0 2.0 4.0 4.0 5.0 方程无解 ``` ### 问题 6. 金融应用:计算未来投资价值(15分) 编写一个函数,给定利率和指定年限,计算未来的投资价值。未来的投资价值按照问题1的公式确定。 使用以下函数头文件: ```cpp double futureInvestmentValue(double investmentAmount, double monthlyInterestRate, int years) ``` 例如,`futureInvestmentValue(10000, 0.05/12, 5)` 返回 12833.59。 编写一个测试程序,提示用户输入投资额(例如1000)和利率(例如9%),并打印出1到30年的未来价值表,如下所示: **示例运** ``` 投资金额:1000 年利率:9 年数 未来价值 1 1093.81 2 1196.41 ... 29 13467.25 30 14730.58 ``` ### 问题 7. 统计学:计算平均值和标准差(15分) 应用以下公式计算n个数的标准差: 为了使用该公式计算偏差,您需要用数组存储各个数值,以便在计算平均值之后继续使用。 您的程序应包含以下函数: ```cpp // 计算双精度浮点数组的平均值 double mean(const double x[], int size) // 计算双精度浮点数的偏差 double deviation(const double x[], int size) ``` 编写一个测试程序,输入10个数字并显示平均值和标准差,如下所示: **示例运** ``` 输入十个数字:1.9 2.5 3.7 2 1 6 3 4 5 2 平均值是 3.11 标准差是 1.55738 ``` ### 问题 8. 马尔可夫矩阵(15分) 如果一个 \( n \times n \) 矩阵的所有元素均为正数且每一列的元素之和为1,则该矩阵称为正马尔可夫矩阵。编写以下函数检查一个矩阵是否为马尔可夫矩阵: ```cpp const int SIZE = 3; bool isMarkovMatrix(const double m[][SIZE]); ``` 编写一个测试程序,输入一个3×3的双精度浮点矩阵并测试它是否为马尔可夫矩阵。以下是示例运: **示例运 1** ``` 输入一个3×3矩阵,逐输入:0.15 0.875 0.375 0.55 0.005 0.225 0.30 0.12 0.4 这是一个马尔可夫矩阵 ``` **示例运 2** ``` 输入一个3×3矩阵,逐输入:0.95 -0.875 0.375 0.65 0.005 0.225 0.30 0.22 -0.4 这不是一个马尔可夫矩阵 ``` ### 提交 每位学生必须提交以下文件: - 报告:一个名为 `Student_ID.pdf` 的文件,包含一封带有个人信息的封面信。这是一份简短的报告,涉及每个问题的程序设计、测试结果和分析评论。报告不得超过10页。 - 代码:一个名为 `Student_ID.zip` 的压缩文件,包括您的程序实现及其所有源代码文件,即 `Question1.cpp`, `Question2.cpp`, `Question3.cpp` 等。您必须在Gradescope上提交这些源代码,即使有些问题尚未解答。 ### 附录:个人评估评分标准 | 任务 | 分值 | 评分标准 | 得分 | | --- | --- | --- | --- | | 问题 1 | 10 | 报告 [5分] <br> • 正确使用计算未来投资价值的公式 [2分] <br> • 清晰地显示计算的未来投资价值,包括美元符号和两位小数 [2分] <br> • 代码清晰简洁 [1分] | 程序执 [5分] <br> • 测试和执程序。正确计算并得出给定示例的正确答案 [5分] | | 问题 2 | 10 | 报告 [5分] <br> • 正确实现Zeller的同余算法,包括所有计算和调整 [2分] <br> • 定义一个函数,接受年份、月份和日期作为参数,返回一周的某一天 [2分] <br> • 代码清晰简洁,变量名有意义,有注释 [1分] | 程序执 [5分] <br> • 测试和执程序。正确计算并得出给定示例的正确答案 [5分] | | 问题 3 | 10 | 报告 [5分] <br> • 使用适当的排序算法对城市名称进升序排序,无论大小写 [2分] <br> • 清晰地显示有序的城市名称,包括正确的顺序和首字母大写 [2分] <br> • 代码清晰简洁,变量名有意义,有注释 [1分] | 程序执 [5分] <br> • 测试和执程序。正确计算并得出给定示例的正确答案 [5分] | | 问题 4 | 10 | 报告 [5分] <br> • 正确实现密码验证规则,包括长度、字母数字组合和最小数字数量 [2分] <br> • 定义一个函数,接受密码作为参数,返回True表示密码有效,False表示无效 [2分] <br> • 代码清晰简洁,变量名有意义,有注释 [1分] | 程序执 [5分] <br> • 测试和执程序。正确计算并得出给定示例的正确答案 [5分] | | 问题 5 | 15 | 报告 [7分] <br> • 正确使用克拉默法则解2×2线性方程组 [2分] <br> • 定义一个函数 `solve_equation()`,带合适的参数(系数、变量和可解标志)和返回类型(void) [2分] <br> • 如果方程有解,显示计算的x和y值;如果没有解,显示相应消息 [2分] <br> • 代码清晰简洁,变量名有意义,有注释 [1分] | 程序执 [8分] <br> • 测试和执程序。正确计算并得出给定示例的正确答案 [8分] | | 问题 6 | 15 | 报告 [7分] <br> • 正确实现未来投资价值公式,包括每月利率和年数的计算和调整 [2分] <br> • 定义一个函数 `futureInvestmentValue()`,带合适的参数(投资额、每月利率和年数)和有意义的返回类型(未来价值) [2分] <br> • 显示表格,包含年数和对应的未来投资价值,格式化表头和小数位数 [2分] <br> • 代码清晰简洁,变量名有意义,有注释 [1分] | 程序执 [8分] <br> • 测试和执程序。正确计算并得出给定示例的正确答案 [8分] | | 问题 7 | 15 | 报告 [9分] <br> • 正确实现平均值和标准差的公式,包括样本偏差的计算和调整 [2分] <br> • 定义两个函数:`mean()` 用于计算平均值,`deviation()` 用于计算标准差,两者带合适的参数(数值数组和大小)和有意义的返回类型 [4分] <br> • 显示计算的平均值和标准差,标签和格式适当 [2分] <br> • 代码清晰简洁,变量名有意义,有注释 [1分] | 程序执 [6分] <br> • 测试和执程序。正确计算并得出给定示例的正确答案 [6分] | | 问题 8 | 15 | 报告 [9分] <br> • 正确实现马尔可夫矩阵的定义,包括检查正元素和列和等于1 [2分] <br> • 定义一个函数 `isMarkovMatrix()`,带合适的参数(矩阵)和有意义的返回类型布尔值) [4分] <br> • 显示清楚的消息,指示矩阵是否为马尔可夫矩阵 [2分] <br> • 代码清晰简洁,变量名有意义,有注释 [1分] | 程序执 [6分] <br> • 测试和执程序。正确计算并得出给定示例的正确答案 [6分] | ### 课程作业结束
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值