hdu 3507 Print Article 斜率优化dp

【题目大意】
零有一个旧打印机,有时不能很好的工作。因为它是古董,所以零仍然喜欢用它来打印物品。但打印机太老了,工作了很长一段时间肯定会磨损,所以零使用成本来评估这个程度。
一天零想打印一篇有n单词的文章,每个单词i都有一个成本ci。此外,零知道打印k个单词在一行将成本为
M是一个常量 这里写图片描述
现在零想知道打印的最低成本。
0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000

稍微思索一番,就可以得出转移方程
dp[i] = dp[j] + ( sum[i] - sum[j] ) ^ 2 + m
本来应 for 一遍 i,for 一遍 j,复杂度为 O(n^2),为了降次,就需要用到斜率优化维护最优的 j,
不妨设 j,k 且 j < k,那么
dp[i] = dp[j] + ( sum[i] - sum[j] ) ^ 2 + m,dp[i] = dp[k] + ( sum[i] - sum[k] ) ^ 2 + m,
dp[i]应当从较小的地方转移过来,于是
dp[j] + ( sum[i] - sum[j] ) ^ 2 + m < dp[k] + ( sum[i] - sum[k] ) ^ 2 + m
化简后得 dp[j] + sum[j] ^ 2 - dp[k] - sum[k] ^ 2 < 2 * sum[i] * ( sum[j] - sum[k] )
( dp[j] + sum[j] ^ 2 - dp[k] - sum[k] ^ 2 ) / 2 * sum[j] - 2 * sum[k] > sum[i] ……【1】
斜率优化题目中分母( sum[j] - sum[k] )往往是负数,移项后要变号。

即如果有一组 j,k 满足这一个关系式,那么就说明 j 更优,反之 k 更优。

那么为什么不能就单纯地通过这个不等式维护一个单调队列呢?(谁不优就把谁删掉)
这是我最开始走入的一个误区,我们在最外层for了一遍i,所以说我们的(sum[i])是会变化的,
也就是说有可能这一次 j 比 k 优,下一次就是 k 比 j 优了。所以贸然删除一个点是不科学的。
单单是通过这样一个关系式,我们是无法构造出一个单调关系的。

所以我们再来观察一下这个式子,
( dp[j] + sum[j] ^ 2 - dp[k] - sum[k] ^ 2 ) / 2 * sum[j] - 2 * sum[k] > sum[i]
形如 ( Ay - By ) / (Ax - Bx) > M ,这样看左边就是一个斜率表达式了,
因为 j < k < i 所以dp[j],dp[k],sum[j],sum[k]都是已知的,就是说x与y坐标都定下来了,
两点之间的斜率也就固定了,我们怎么来吧斜率和单调联系起来呢?

假设q队列里面的元素为a1,a2,a3…an,我们想要的状态是a1优于a2优于a3…优于an,
也就是说要让 k(a1,a2)>M,k(a2,a3)>M,k(a3,a4)>M…我们自然不可能一个一个的判断,
所以容易想到让 M < k(a1,a2) < k(a2,a3) < k(a3,a4)…这样把斜率按照从小到大排个序,head自然就最优了。
由此提出解决方案,维护一个下凸包,当然如果不等号反向就是上凸包了。

易证,如果一个点不在维护的凸包上面,那么他一定不是最优的

#include <iostream>  
#include <cstdio> 
#include <cstring>
#include <algorithm>
#define LL long long 
using namespace std;  

const int N = 500010;  
int n, m;
int dp[N], q[N], sum[N];

int pointx(int i , int j){  
    return 2 * (sum[i] - sum[j]);  
} 

int pointy(int i , int j){  
    return sum[i] * sum[i] + dp[i] - (sum[j] * sum[j] + dp[j]);  
}

int main(){  
    int cc;
    while( ~scanf("%d%d", &n, &m) ){  
        int head = 0, tail = 0;  
        q[tail++] = 0;
        for(int i=1; i<=n; i++){ 
            scanf("%d", &cc);  
            sum[i] = sum[i-1] + cc;  
            while(head + 1 < tail && pointy(q[head+1] ,q[head]) <= pointx(q[head+1], q[head]) * sum[i]) ++head;
            //a1不比a2优,head++,直到满足head最优 
            dp[i] = (sum[i] - sum[q[head]]) * (sum[i] - sum[q[head]]) + m + dp[q[head]];
            while(head + 1 < tail && pointy(i, q[tail-1]) * pointx(q[tail-1], q[tail-2]) <= pointy(q[tail-1], q[tail-2]) * pointx(i, q[tail-1])) --tail; 
            //维护下凸包 
            q[tail++] = i;   
        } 
        printf("%d\n", dp[n]);  
    }  
    return 0;  
} 
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值