ming
【问题描述】 给你 N个任务 ,对于第i个任务 ,我们需要ti的 时间去完成它,deadline是di。如果我们设fi为第i个任务的完成时刻 ,那你需要做的便是确定每个任务,那你需要做的便是确定每个任务开始 时间 ,使得 max(max(0,fi-di))最小化 。(同一时间只能做个任务)
【输入格式】
第一行 一个整数 N代表任务的个数 。
接下来 N行每两个整数 ,分别代表 ti,di。
【输出格式】
一行一 个整数代表最小化的 max(max(0,fi-di))。
【样例输入】
2
1 1
2
【样例输出】
1
【数据规模与约定】
对于 30%的数据 ,1≤��≤10。
对于 60%的数据 ,1≤��≤10^3。
对于 100%的数据 ,1≤��≤10^5。
思路:
考虑序列中只有两个元素的情况,此时两种可能多的排列对应答案分别为max(t1−d1,t1+t2−d2)和max(t2−d2,t2+t1−d1)max(t2−d2,t2+t1−d1),我们希望选取其中的最小值。注意到t1−d1 < t2+t1−d1,t2−d2 < t1+t2−d2,所以决策由t1+t2−d2和t2+t1−d1的相对大小唯一决定,也就是说,将di值较小的元素放在前面更优。
再扩展至一般的情况,考虑相邻的两个元素,其内部顺序对其他元素没有影响,所以交换一对相邻逆序对将使答案更优。根据冒泡排序原理,重复交换相邻逆序对就能将序列转换为升序排列,得到唯一没有相邻逆序对的排列。所以最优解就是将任务按didi值升序排序,最后模拟一遍算出答案即可。
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 100010;
int n, sum, ans;
struct ln{
int t, d;
}act[N];
bool cmp(ln aa, ln bb){
return aa.d < bb.d;
}
int main(){
freopen("ming.in", "r", stdin);
freopen("ming.out", "w", stdout);
scanf("%d", &n);
for(int i=1; i<=n; i++){
scanf("%d%d", &act[i].t, &act[i].d);
}
sort(act+1, act+n+1, cmp);
for(int i=1; i<=n; i++){
sum += act[i].t;
ans = max(ans, sum - act[i].d);
}
printf("%d", ans);
return 0;
}