解一类A^x=B(mod C)(C是质数)的方程 (BSGS)

bsgs算法
主要用来解决 A^x=B(mod C)(C是质数),都是整数,已知A、B、C求x。(poj 2417 Discrete Logging)
具体步骤如下:
先把x=i*m-j,其中m=ceil(sqrt(C)),(ceil是向上取整)。
这样原式就变为A^(i*m-j)=B(mod C),
再变为A^j×B=A^(m*i) (mod C)。
枚举j(范围0-m),将A^j×B存入hash表
枚举i(范围1-m),从hash表中寻找第一个满足A^j×B=A^(m*i) (mod C)。
此时x=i*m-j即为所求。
在网上题解大多用的是x=i*m+j,其实思路是一样的,只是会牵扯的求逆元,使x=i*m-j就可以轻松避免这个问题了。
那么肯定有人会有疑问为何只计算到m=ceil(sqrt(C))就可以确定答案呢?
x=i*m-j 也就是x 的最大值不会超过p,那超过p的怎么办 ?
有一个公式 a^(k mod p-1)=a^k (mod p) 这个公式的推导需要用到费马小定理
k mod p-1可以看做 k-m(p-1) ,原式可化成 a^k/(a^(p-1))^m=a^k (mod p)
根据费马小定理 a^(p-1)=1 (mod p) 其中p为质数 ,a,p 互质,可得a^k/1^m=a^k (mod p) a^k=a^k (mod p) 得证。
可以简单理解为分块之后的暴力枚举。
下面第一份代码为 i*m-j, 第二份代码为 i*m+j。 存储时Hash,map都行。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map> 
#define LL long long    
using namespace std; 

LL a,b,c,m,f[10000000];

map<LL,int> mp;    

LL qsm(LL x){
  //快速幂    
    LL sum=1, aa=a;     
    while(x>0){    
        
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值