BZOJ 3237 连通图 (cdq分治 并查集)

Description
这里写图片描述

Input
这里写图片描述

Output
这里写图片描述

Sample Input

4 5
1 2
2 3
3 4
4 1
2 4
3
1 5
2 2 3
2 1 2

Sample Output

Connected
Disconnected
Connected

HINT

N<=100000 M<=200000 K<=100000

思路:
考虑一个询问的影响范围,并不包括该询问前面的部分。
允许离线,贡献可以累计,分治好了。
并查集维护,每次暴力把并查集的状态改回去。
如何将并查集恢复至初始的样子?
每当一个点的父亲被修改时,将它和它的父亲入栈,每次只需要记录一下当前过程对应在栈的哪个位置即可。
cdq分治过程:
首先把所有没有影响的边都建出来
1、把左边没有右边有的边建出来
2、分治左边
3、把并查集恢复至初始的样子
4、把右边没有左边有的边建出来
5、分治右边
每次建的边数为这个区间内的集合中的边数,是一个与n无关的量,所以复杂度是正确的
O(qclogqc)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define MAXN 200010
#define SIZE 5000010
using namespace std;

int n, m, T, tim, top;
int ans[MAXN], del[MAXN];
int f[MAXN], sta[SIZE];

int find(int x){
    if(f[x] == x) return x;
    sta[++top] = x; sta[++top] = f[x];
    return f[x] = find(f[x]);
}

void unionn(int a, int b){
    if(find(a) != find(b)){
        sta[++top] = f[b];
        sta[++top] = f[f[b]];//记录下来原来的father,方便之后的还原 
        f[f[b]] = f[a];
    } 
}

struct edge{
    int u, v;
}ed[MAXN];

struct query{
    int siz, ed[4];
}q[MAXN];

void solve(int l, int r){
    int now = top, flag = 1;
    if(l == r){
        for(int i=0; i<q[l].siz&&flag; i++)
            if(find(ed[q[l].ed[i]].u) != find(ed[q[l].ed[i]].v)) flag = 0;//判断删掉的边两端的点是否连通 
        ans[l] = flag;
        while (now != top) f[sta[top-1]] = sta[top], top -= 2;
        return;
    }
    int mid = (l + r) >> 1; tim++;
    for(int i=l; i<=mid; i++)
        for(int j=0; j<q[i].siz; j++)
            del[q[i].ed[j]] = tim;
    for(int i=mid+1; i<=r; i++)
        for(int j=0; j<q[i].siz; j++)
            if(del[q[i].ed[j]] != tim)
                unionn(ed[q[i].ed[j]].u, ed[q[i].ed[j]].v);//把之后会删掉但是现在存在的边加进来 
    solve(l, mid); tim++;
    while (now != top) f[sta[top-1]] = sta[top], top -= 2;
    for(int i=mid+1; i<=r; i++)  
        for(int j=0; j<q[i].siz; j++)
            del[q[i].ed[j]] = tim;
    for(int i=l; i<=mid; i++)
        for(int j=0; j<q[i].siz; j++)
            if(del[q[i].ed[j]] != tim)    
                unionn(ed[q[i].ed[j]].u, ed[q[i].ed[j]].v);//把之前删掉过但是现在存在的边加进来 
    solve(mid+1, r);
    while (now != top) f[sta[top-1]] = sta[top], top -= 2;//还原 
}

int main(){
    scanf("%d%d", &n, &m);
    for(int i=1; i<=n; i++)  f[i] = i;
    for(int i=1; i<=m; i++)  scanf("%d%d", &ed[i].u, &ed[i].v);
    scanf("%d", &T); tim = 1;
    for(int i=1; i<=T; i++){
        scanf("%d", &q[i].siz);
        for(int j=0; j<q[i].siz; j++){
            scanf("%d", &q[i].ed[j]);
            del[q[i].ed[j]] = tim;
        }
    }
    for(int i=1; i<=m; i++)  
        if(del[i] != tim) unionn(ed[i].u, ed[i].v);
    solve(1, T);
    for(int i=1; i<=T; i++)  
        puts(ans[i] ? "Connected":"Disconnected");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值