Description
Input
Output
Sample Input
4 5
1 2
2 3
3 4
4 1
2 4
3
1 5
2 2 3
2 1 2
Sample Output
Connected
Disconnected
Connected
HINT
N<=100000 M<=200000 K<=100000
思路:
考虑一个询问的影响范围,并不包括该询问前面的部分。
允许离线,贡献可以累计,分治好了。
并查集维护,每次暴力把并查集的状态改回去。
如何将并查集恢复至初始的样子?
每当一个点的父亲被修改时,将它和它的父亲入栈,每次只需要记录一下当前过程对应在栈的哪个位置即可。
cdq分治过程:
首先把所有没有影响的边都建出来
1、把左边没有右边有的边建出来
2、分治左边
3、把并查集恢复至初始的样子
4、把右边没有左边有的边建出来
5、分治右边
每次建的边数为这个区间内的集合中的边数,是一个与n无关的量,所以复杂度是正确的
O(qclogqc)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define MAXN 200010
#define SIZE 5000010
using namespace std;
int n, m, T, tim, top;
int ans[MAXN], del[MAXN];
int f[MAXN], sta[SIZE];
int find(int x){
if(f[x] == x) return x;
sta[++top] = x; sta[++top] = f[x];
return f[x] = find(f[x]);
}
void unionn(int a, int b){
if(find(a) != find(b)){
sta[++top] = f[b];
sta[++top] = f[f[b]];//记录下来原来的father,方便之后的还原
f[f[b]] = f[a];
}
}
struct edge{
int u, v;
}ed[MAXN];
struct query{
int siz, ed[4];
}q[MAXN];
void solve(int l, int r){
int now = top, flag = 1;
if(l == r){
for(int i=0; i<q[l].siz&&flag; i++)
if(find(ed[q[l].ed[i]].u) != find(ed[q[l].ed[i]].v)) flag = 0;//判断删掉的边两端的点是否连通
ans[l] = flag;
while (now != top) f[sta[top-1]] = sta[top], top -= 2;
return;
}
int mid = (l + r) >> 1; tim++;
for(int i=l; i<=mid; i++)
for(int j=0; j<q[i].siz; j++)
del[q[i].ed[j]] = tim;
for(int i=mid+1; i<=r; i++)
for(int j=0; j<q[i].siz; j++)
if(del[q[i].ed[j]] != tim)
unionn(ed[q[i].ed[j]].u, ed[q[i].ed[j]].v);//把之后会删掉但是现在存在的边加进来
solve(l, mid); tim++;
while (now != top) f[sta[top-1]] = sta[top], top -= 2;
for(int i=mid+1; i<=r; i++)
for(int j=0; j<q[i].siz; j++)
del[q[i].ed[j]] = tim;
for(int i=l; i<=mid; i++)
for(int j=0; j<q[i].siz; j++)
if(del[q[i].ed[j]] != tim)
unionn(ed[q[i].ed[j]].u, ed[q[i].ed[j]].v);//把之前删掉过但是现在存在的边加进来
solve(mid+1, r);
while (now != top) f[sta[top-1]] = sta[top], top -= 2;//还原
}
int main(){
scanf("%d%d", &n, &m);
for(int i=1; i<=n; i++) f[i] = i;
for(int i=1; i<=m; i++) scanf("%d%d", &ed[i].u, &ed[i].v);
scanf("%d", &T); tim = 1;
for(int i=1; i<=T; i++){
scanf("%d", &q[i].siz);
for(int j=0; j<q[i].siz; j++){
scanf("%d", &q[i].ed[j]);
del[q[i].ed[j]] = tim;
}
}
for(int i=1; i<=m; i++)
if(del[i] != tim) unionn(ed[i].u, ed[i].v);
solve(1, T);
for(int i=1; i<=T; i++)
puts(ans[i] ? "Connected":"Disconnected");
return 0;
}