【NOIP2016提高A组模拟8.19】树上路径
Description
给出一棵树,求出最小的k,使得,且在树中存在路径p,使得k>=S且k<=E。(k为路径p上的边的权值和)
Input
第一行给出N,S,E。N代表树的点数,S,E如题目描述。
下面N-1行给出这棵树的相邻两个节点的边及其权值W。
Output
输出共一行一个整数,表示答案。若无解输出-1。
Sample Input
5 10 40
2 4 80
2 3 57
1 2 16
2 5 49
Sample Output
16
【样例解释】
1到2的路径即为答案。
对于20%的数据满足n<=300
对于50%的数据满足n<=3000
对于60%的数据满足n<=10^5
对于以上数据,满足|E-S|<=50
对于100%的数据满足n<=10^5,|E-S|<=10^6
对于所有数据满足1<=Wi<=1000,|E|,|S|<=10^9
思路:比较裸的点分,不过这道题维护的是最小值,就没有可减的性质了,所以去重(路径两端在同一子树内)就要直接判断。
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#define LL long long
using namespace std;
const int N = 100010;
int n, S, E, core, idc=0, sum;
int head[N], siz[N], mx[N], vis[N];
LL ans=2e17, dis[N];
struct Edge{
int to, nxt;
LL w;
}ed[N<<2];
struct tree{
LL dis; int tp;
}a[N];
bool cmp(tree aa, tree bb) {
return aa.dis < bb.dis;
}
void adde(int u, int v, LL w){
ed[++idc].to = v;
ed[idc].nxt = head[u];
ed[idc].w = w;
head[u] = idc;
}
void getcore(int u, int f){
siz[u] = 1;
for(int i=head[u]; i; i=ed[i].nxt){
int v = ed[i].to;
if(vis[v] || v == f) continue;
getcore(v, u);
siz[u] += siz[v];
mx[u] = max(siz[v], mx[u]);
}
mx[u] = max(mx[u], sum-siz[u]);
if(mx[u] < mx[core]) core = u;
}
void getdeep(int u, int f, int sroot){
for(int i=head[u]; i; i=ed[i].nxt){
int v = ed[i].to;
if(vis[v] || v == f) continue;
dis[v] = dis[u] + ed[i].w;
if(sroot == 0) getdeep(v, u, v);
else getdeep(v, u, sroot);
}
a[++idc].tp = sroot;//属于哪个子树
a[idc].dis = dis[u];
}
void count(){
sort(a+1, a+idc+1, cmp);
int l=1, r=idc;
while(l < r){
LL k = a[l].dis + a[r].dis;//
if(a[l].tp == a[r].tp) {
if(a[l].dis + a[r-1].dis < S) ++l;//去重
else --r;
}
else {
if(k >= S) ans = min(ans, k), --r;
else ++l;
}
}
}
void solve(int u, int f){
vis[u] = 1; dis[u] = 0; idc = 0;//
getdeep(u, f, 0); count();
for(int i=head[u]; i; i=ed[i].nxt){
int v = ed[i].to;
if(vis[v] || v == f) continue;
core = 0; sum = siz[v];
getcore(v, u); solve(core, 0);
}
}
int main(){
freopen ("path.in", "r", stdin);
freopen ("path.out", "w", stdout);
scanf("%d%d%d", &n, &S, &E);
for(int i=1; i<n; i++){
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
adde(u, v, w); adde(v, u, w);
}
core = 0; mx[core] = 0x3fffffff; sum = n;
getcore(1, 0); solve(core, 0);
if( ans > E ) cout << -1 << endl;//
else cout << ans << endl;
return 0;
}