2435: [Noi2011]道路修建
Time Limit: 10 Sec Memory Limit: 128 MB
Description
在 W 星球上有 n 个国家。为了各自国家的经济发展,他们决定在各个国家之间建设双向道路使得国家之间连通。但是每个国家的国王都很吝啬,他们只愿意修建恰好 n – 1条双向道路。 每条道路的修建都要付出一定的费用, 这个费用等于道路长度乘以道路两端的国家个数之差的绝对值。例如,在下图中,虚线所示道路两端分别有 2 个、4个国家,如果该道路长度为 1,则费用为1×|2 – 4|=2。图中圆圈里的数字表示国家的编号。
由于国家的数量十分庞大,道路的建造方案有很多种,同时每种方案的修建费用难以用人工计算,国王们决定找人设计一个软件,对于给定的建造方案,计算出所需要的费用。请你帮助国王们设计一个这样的软件。
Input
输入的第一行包含一个整数n,表示 W 星球上的国家的数量,国家从 1到n
编号。接下来 n – 1行描述道路建设情况,其中第 i 行包含三个整数ai、bi和ci,表
示第i 条双向道路修建在 ai与bi两个国家之间,长度为ci。
Output
输出一个整数,表示修建所有道路所需要的总费用。
Sample Input
6
1 2 1
1 3 1
1 4 2
6 3 1
5 2 1
Sample Output
20
HINT
n = 1,000,000; 1≤ai, bi≤n
0 ≤ci≤ 10^6
思路:
由于害怕爆栈(试了一组极限的链就挂掉啦),所以bfs处理逆拓扑序,然后再bfs跑一边。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#define N 1000010
#define LL long long
using namespace std;
int n, idc, l=0, r=0;
int head[N], sum[N], vis[N], in[N], q[N<<4];
LL ans;
struct Edge{
int to, nxt, w;
}ed[N<<1];
void adde(int u, int v, int w){
ed[++idc].to = v;
ed[idc].nxt = head[u];
ed[idc].w = w;
head[u] = idc;
}
/*
void dfs(int u, int f){
if(u != 1) sum[u] = 1;
for(int k=head[u]; k; k=ed[k].nxt){
int v = ed[k].to;
if(v == f) continue;
dfs(v, u);
ans += (LL)abs(n - 2 * sum[v]) * (LL)ed[k].w;
sum[u] += sum[v];
}
}*/
void bfs(){
q[r++] = 1;
while(l < r){
int u = q[l++]; vis[u] = 1;
for(int k=head[u]; k; k=ed[k].nxt){
int v = ed[k].to;
if( vis[v] ) continue;
in[u]++;
q[r++] = v;
}
}
}
void work(){
while(l < r){
int u = q[l++]; sum[u] += 1; vis[u] = 1;
for(int k=head[u]; k; k=ed[k].nxt){
int v = ed[k].to;
if( vis[v] ) continue;
sum[v] += sum[u];
ans += (LL)abs(n - 2 * sum[u]) * (LL)ed[k].w;
if(--in[v] == 0) q[r++] = v;
}
}
}
int main(){
freopen ("road.in", "r", stdin);
freopen ("road.out", "w", stdout);
scanf("%d", &n);
for(int i=1; i<n; i++){
int u, v, w; scanf("%d%d%d", &u, &v, &w);
adde (u, v, w); adde (v, u, w);
}
bfs();
/*dfs(1, 1);*/
memset(q, 0, sizeof(q));
memset(vis, 0, sizeof(vis));
l = r = 0;
for(int i=1; i<=n; i++) if(in[i] == 0) q[r++] = i;
work();
cout << ans << endl;
return 0;
}