POJ 1061 青蛙的约会

题意:

有两只青蛙相向而行,A青蛙从x点出发每次跳m,B青蛙从y点出发每次跳n,它们所在的地方是一个长度为L的圈,问你最少需要跳几次它们才能相遇,若不能相遇则输出-1.

思路:

首先,设这个次数为t可得:(x+m*t)%L=(y+n*t)%L

相当于它们差了k个L得路程,即:(x+m*t)=(y+n*t)+k*L(这里k可小于0)

整理下得:(n-m)*t+k*L=(x-y)

对于两元一次方程我们有扩展欧几里得解法:a*x+b*y=gcd(a,b)能解出一组特解(x,y)

那么我们这里令a=(n-m),x=t,b=L,y=k,c=gcd(a=(n-m),b=L)

然后去跑扩展欧几里得,得到解(x,y),注意这里的解是对方程(n-m)*t+k*L=gcd(n-m,L)而言而不是对(n-m)*t+k*L=(x-y)而言,所以我们得到解后要先判断下(x-y)%gcd(n-m,L)=0?若结果不为0,那么原方程无解(因为你无法两边扩大相同的整数倍)。这时我们把方程两边同时乘以gcd(n-m,L)倍,即可得到我们所要求的解x*gcd(n-m,L)。这里引用下扩展欧几里得的定理:

   定理一:如果d =gcd(a, b),则必能找到正的或负的整数k和l,使d = a*x+ b*y。

   定理二:若gcd(a,b) = 1,则方程ax ≡ c (mod b)在[0, b-1]上有唯一解。

   定理三:若gcd(a,b) = d,则方程ax ≡ c (mod b)在[0, b/d - 1]上有唯一解。

证明:上述同余方程等价于ax + by = c,如果有解,两边同除以d,就有a/d * x + b/d * y = c/d,即a/d * x ≡ c/d (modb/d),显然gcd(a/d, b/d) = 1,所以由定理二知道x在[0, b/d - 1]上有唯一解。所以ax + by = c的x在[0, b/d - 1]上有唯一解,即ax ≡ c (mod b)在[0, b/d - 1]上有唯一解。

如果得到ax ≡ c (mod b)的某一特解X,那么令r = b/gcd(a, b),可知x在[0, r-1]上有唯一解,所以用x = (x% r + r) % r就可以求出最小非负整数解x了!(X % r可能是负值,此时保持在[-(r-1), 0]内,正值则保持在[0, r-1]内。加上r就保持在[1, 2r - 1]内,所以再模一下r就在[0, r-1]内了)。

#include<cstdio>
typedef __int64 LL;

LL Extended_Euclid(LL a,LL b,LL &x,LL &y)
{
	if(b==0)
	{
		x=1;
		y=0;
		return a;
	}
	LL d=Extended_Euclid(b,a%b,x,y);
	LL t=x;
	x=y;
	y=t-(a/b)*y;
	return d;
}

int main()
{
	LL Ax,Bx,m,n,L,a,b,c,gcd,x,y,t,mod;
	scanf("%I64d%I64d%I64d%I64d%I64d",&Ax,&Bx,&m,&n,&L);
	a=n-m;
	b=L;
	c=Ax-Bx;
	gcd=Extended_Euclid(a,b,x,y);
	if(c%gcd==0)
	{
		t=x*(c/gcd);
		mod=b/gcd;
		t=(t%mod+mod)%mod;
		printf("%I64d\n",t);
	}
	else printf("Impossible\n");
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值