题意:
给你一颗n个点n-1条边的树,树边长均为1,问你树上有几对点对满足它们之间距离k。
思路:
树形dp。假设dp[i][j]为以从i到其距离为j的儿子的路径条数。我们在递归过程中,已经知道了它儿子的dp[v][0~k]的值,那么有:dp[u][1~k]+=dp[v][0~k-1]。并且可以得到从u点出发和以u为中间节点的方法数,即ans+=dp[v][k-1]和ans+=dp[v][0~k-1]*dp[u][k-1~0]。
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
typedef __int64 LL;
const int MAX=50005;
LL ans,dp[MAX][505];
int n,k;
vector<int> gr[MAX];
void DFS(int u,int f){
int nc=gr[u].size();
dp[u][0]=1;
for(int i=0;i<nc;i++){
int v=gr[u][i];
if(v!=f){
DFS(v,u);
ans+=dp[v][k-1];
for(int j=0;j<k-1;j++){
ans+=dp[v][j]*dp[u][k-1-j];
}
for(int j=0;j<k;j++){
dp[u][j+1]+=dp[v][j];
}
}
}
}
int main(){
scanf("%d%d",&n,&k);
int u,v;
for(int i=1;i<n;i++){
scanf("%d%d",&u,&v);
gr[u].push_back(v);
gr[v].push_back(u);
}
memset(dp,0,sizeof(dp));
ans=0;
DFS(1,-1);
printf("%I64d\n",ans);
return 0;
}