阿里面试智力题

智力题: 25匹马5个跑道,怎样选出 最快的5匹 来?

将马分成A、B、C、D、E五组。 第1-5次比赛:各组分别进行比赛,决出各组名次 A1、A2、A3、A4、A5, B1、B2、B3、B4、B5, 。。。。 。。。。。。E4、E5。 第6次比赛:A1、B1、C1、D1、E1, 第一名是跑的最快的。 第7次比赛:将上次第一名所在组的下一号马再和剩余的4匹1号马比赛, 第一名是跑的第二快的马,由于只有4个名额,所以跑的最慢的马和所在组剩余的马全部被淘汰。 第8次比赛:将上次第一名所在组的下一号马、上次第二名所在组的下一号马和剩余的3匹马比赛, 第一名是跑的第三快的马,由于只有3个名额,所以跑的最慢的两匹马和所在组剩余的马全部被淘汰。 在剩下的比赛中分别淘汰慢的,将排名稍后的加进来比赛,最多跑到第10次就可以选出最快的5匹马。如果在某一次比赛中排名前几的是同一组的且和已经选出的马加一起大于等于5,就可以提前决出前5名。 所以8-10次就可以选出最快的5匹马。

用2个玻璃球找到从一100层的大楼的某一层落下刚好会摔碎,如何制定最优策略?

作者:时宇电
链接:https://www.zhihu.com/question/27547892/answer/131239272
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
 

问:
有一种玻璃杯质量确定但未知,需要检测。
有一栋100层的大楼,该种玻璃杯从某一层楼扔下,刚好会碎。
现给你两个杯子,问怎样检测出这个杯子的质量,即找到在哪一层楼刚好会碎?

------- 一条分割线的时间思考 ---------

分析:
首先理解题意,将这个杯子从某一层楼扔下,如果没碎,我还可以再利用它测试。
如果碎了的话,就不能再继续用了。
如果我从x楼扔下,没碎,在x+1楼扔下,碎掉了,即证明找到了x+1是刚好碎掉的楼层。

问题的关键是,怎么快速找到这个楼层呢?这是一个查找问题。
我们需要一个策略方法来快速地找到它,就看谁的方法比较优秀拉。
而优秀的方法其评价标准显而易见:各种情况下都能快速地找到目标楼层。

------- 再一条分割线的时间思考 ---------

思考路径:
如果只有一个杯子的话,应该怎么做呢?
稍微想一下也可以知道,必定只能一层一层地扔,1楼没碎扔2楼,2楼没碎扔3楼,直到碎掉。

现在我有两个杯子。

学习过算法和程序的人应该都知道二分法,很容易想到这样去做,因为面对的是一个搜索问题。
所以可能会给出这样的策略:
从50楼扔下,没碎的话,再扔75楼,再没碎我扔88楼,依次下去很快就可以锁定楼层?
很快你会意识到问题所在,万一第一次从50层楼扔下去,碎了咋整,难道又一层一层地扔?
杯子的质量是刚好在49层碎掉的话。最差的情况我需要扔50次,这方法不行。

再一个比较常见的方法是,先分区间的扔,再慢慢地一层一层地扔,隐含着分段查找的策略。
具体操作方式是:
先从第10楼扔,再从第20楼扔,依次下去,如果到某一层碎掉,比如50层碎掉了,我再从41楼开始扔,这样的话应该算是比较快了把?
这个方法是要快一点不过如果我杯子的质量比较好,在99楼才会刚好碎掉。
这样,最差的情况下,需要扔19次才能找到目标楼层,还是不能让面试官满意。

我们需要的方法是无论杯子的质量如何,不论是在1楼碎,49楼碎,99楼碎都要能快速锁定的方法。

继续思考刚才方法的缺陷,当杯子质量比较差的时候,此方法还是比较快速的找到的。比如杯子是在19楼刚好碎,我只需要扔11次,比99楼刚好碎的情况要少很多次。

所以我们的愿望是:
杯子的质量无论分布在哪个查找区间,都可以快速地找到。所以我想到的是可以“匀”一下刚才的方法。即最开始我需要大胆地扔,然后再慢慢小心地扔。

具体方法设计:
每次扔的区间减少一层,这样做可以保证每个区间查找的最差次数是一样的。
假定第一步在15楼扔,没碎的话则下一步在29楼扔,没碎下一步在42楼扔....碎掉之后则在上一次没碎的楼层开始向上扔。那么最开始在哪一层开始扔呢??
这里我们需要拿支笔算一下:
x+(x-1)+(x-2)+...+2 >=100
求解出答案为14。

即最终给出的解决方案是:
最开始从14楼开始扔,没碎的话在27楼扔,再没碎的话在39楼扔.....一旦碎掉,则从上一次没碎的楼层逐层往上扔,即可快速确认杯子在哪一层刚好会碎掉。

这样的方法可以保证在最差的情况下也能在14次内找到楼层,平均需要的次数不到10次。
(列式子算了下期望是9次多)

这是我知道的最好的方法,有意思。

23个硬币,10枚正面朝上,13枚反面朝上

硬币翻面(101枚硬币, 11枚朝上,蒙上眼睛, 可以翻动硬币,将硬币分成两堆,要求两堆正面朝上的数量相同)

将其分为一堆10个、另一堆13个,然后将10个那一堆所有的硬币翻转就可以了,两边的就一样多了。
原理是这样的,假设13个一堆中有X个正面的,则10个一堆的有10-X个正面的。这时把10个一堆的全部翻转,则正面的成反面,反面的成正面,这时正面的有10-(10-X)个,即X个,13个一堆中有X个正面,10个一堆中也有X个正面,X=X,所以符合题目要求。
这里需要说明的是,如果是分为各5个,作为一个盲人是完全不可能的。而作为一道智力测验题,考验的是人的逆向思维和二度思维。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值