【NIM】一个NP问题的简解

题目大意:在n颗石子中,第一次可取1n-1颗,之后每次取的不超过上一次取的石子数。取完的获胜。

 

给出结论:当n2k次方时,是必败局面,否则先手必胜。(k>=1

 

证明:

首先,考虑n为奇数时,每次取1,对手下一次也只能取1,必胜。

否则n即为偶数,是2k1倍。

 

k1为奇数时,是必胜策略,因为每次取2,最终由先手取完,要是其中某次后手不取2,取1,便转移到奇数的局面,还是先手胜利。

 

所以2的奇数倍是必胜态。

 

剩下2的偶数倍,是4k2倍。

同理,当k1为奇数时,同样是必胜策略。奇数不能取,取2的话,剩下的为2的奇数倍,是必胜态。

 

再考虑4,8,16……的偶数倍。

 

得到一个类似数学归纳法证明的结论:

n21k次方的奇数倍都为必胜态时,则n2k+1次方的奇数倍也为必胜态

 

因为:

当先手取2k+1次方后,后手不取2k+1次方,就必定转移到其他的必胜态(之前2的某次方的奇数倍),或者一直取下去,也是先手取完。

 

当然,当n恰为2k次方时,一次是取不了2k次方的,所以只能转移到之前的2的某次方的奇数倍。

 

 

hlq大神讨论了另外一种二进制解法。lowbit 相关。

在二进制下,先手取最后一个1就能够获胜。

取的是第k位,之后的全部都会是0.

把取第k位两次,从0取为1,再从1取回0.看做一个过程,无疑这个会导致前面的退位。

我们先考虑只取第k位,暂时不取k位之后的。

 

k位之前的部分代表的数,就是这个过程的倍数。每个过程都包括先手和后手都取一次。

当最后取完时,进行了若干次完整的过程。可以看做先手是先将1取成0,之后先后手进行若干次过程(后手取为1,先手再取回0)。所以先手是必胜的。

 

假设后手不取第k位,反而取后面一个更小的位。

因为取的是最后一个1,所以后面都是0,后手便把某一位0取做了1,先手只需再将最后一位1取做0,便是和上面论述的一样的问题。

因为2n次方,是只有第一位为1的二进制数,并且规则规定我们取不到那一位,所以先手只能取到一个0位,必败。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值