【故障诊断】【pytorch】基于EMD-TCN的轴承故障诊断研究[西储大学数据](Python代码实现)

        💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、西储大学轴承数据集

三、研究方法

四、研究结果与讨论

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据、文档说明书下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于EMD-TCN(经验模态分解-时序卷积网络)的轴承故障诊断研究,结合西储大学的数据,是一种先进的故障诊断方法。以下是对该研究的详细分析:

一、研究背景与意义

滚动轴承作为机械设备中的关键部件,其运行状态对于设备的整体性能和稳定性至关重要。然而,由于工作环境复杂、运行时间长等因素,滚动轴承容易发生故障,导致设备停机、生产中断,甚至引发安全事故。因此,对滚动轴承进行故障诊断具有极其重要的意义。

经验模态分解(EMD)是一种有效的信号处理技术,它能够将复杂的非线性和非平稳信号分解为一系列本征模态函数(IMF),从而提取出信号中的故障特征。时序卷积网络(TCN)则是一种专门用于处理时间序列数据的深度学习模型,它具有强大的序列建模能力和长期记忆能力。将EMD与TCN相结合,可以实现对轴承故障的准确诊断,为机械设备的预防性维护和故障预测提供有力支持。

二、西储大学轴承数据集

西储大学轴承数据集是滚动轴承故障诊断领域常用的数据集之一,由美国凯斯西储大学提供。该数据集包含了多种故障类型(如内圈故障、外圈故障、滚动体故障等)和正常状态下的振动信号。这些信号是通过加速度传感器采集的,采样频率通常为12kHz或48kHz,具有广泛的工况覆盖和故障类型多样性。数据集提供了丰富的数据资源和研究基础,使得研究者能够基于这些数据开展深入的故障诊断研究。

三、研究方法

基于EMD-TCN的轴承故障诊断研究主要包括以下几个步骤:

  1. 数据预处理

    • 加载西储大学轴承数据集,并进行数据清洗和划分,得到训练集、验证集和测试集。
    • 对信号进行EMD分解,提取出IMF分量,作为后续TCN模型的输入特征。
  2. TCN模型构建

    • 根据IMF分量的数量和特征维度,构建合适的TCN模型结构。
    • 设置模型的输入层、卷积层、扩张层、输出层等,并确定卷积核大小、扩张系数等参数。
    • 选择合适的损失函数和优化算法,如交叉熵损失函数和Adam优化算法。
  3. 模型训练与测试

    • 使用训练集对TCN模型进行训练,通过反向传播算法优化模型参数。
    • 使用验证集对模型进行验证,调整模型参数以提高泛化能力。
    • 使用测试集对模型进行测试,评估模型的故障诊断性能,包括准确率、召回率等指标。
  4. 结果分析与优化

    • 对模型的诊断结果进行可视化分析,如绘制混淆矩阵、ROC曲线等。
    • 根据分析结果,对模型进行优化,如调整模型结构、增加数据增强等。
    • 将优化后的模型应用于实际故障诊断中,验证其有效性和实用性。

四、研究结果与讨论

通过基于EMD-TCN的轴承故障诊断研究,可以得到以下结论:

  1. EMD能够有效地将非线性和非平稳的轴承振动信号分解为一系列IMF分量,提取出信号中的故障特征。
  2. TCN模型具有强大的序列建模能力和长期记忆能力,能够准确地捕捉IMF分量中的故障特征,实现对轴承故障的准确诊断。
  3. 与传统的故障诊断方法相比,基于EMD-TCN的故障诊断方法具有更高的准确性和鲁棒性,能够适应不同工况和故障类型。
  4. 通过优化模型结构和参数,可以进一步提高模型的故障诊断性能,为机械设备的预防性维护和故障预测提供更有力的支持。

五、结论与展望

本研究基于EMD-TCN模型对西储大学轴承数据集进行了故障诊断研究,取得了良好的效果。未来,可以进一步探索以下方向:

  1. 优化模型结构,提高模型的计算效率和故障诊断性能。
  2. 将该方法应用于其他类型的机械设备故障诊断中,拓展其应用范围。
  3. 结合其他信号处理技术(如小波变换、短时傅里叶变换等),进一步提高故障诊断的准确性和可靠性。
  4. 引入深度学习中的其他先进技术(如注意力机制、迁移学习等),进一步提升模型的泛化能力和鲁棒性。

综上所述,基于EMD-TCN的轴承故障诊断研究具有重要的理论意义和实际应用价值,为滚动轴承故障诊断提供了新的思路和方法。

📚2 运行结果

 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

 [1]李酉戌.基于卷积神经网络的网络故障诊断模型[J].软件导刊, 2017, 16(12):4.

[2]谭博韬,黄民,刘跃,等.基于CNN-LSTM故障诊断的自动扶梯监测软件设计[J].电子测量技术, 2023, 46(12):1-7.

[3]吴聪,李梦男,李琨.基于数据划分和ODM-CNN的滚动轴承故障诊断[J].煤矿机械, 2023.

[4]杨慧,张瑞君,陈国良.基于ICNN-BiGRU的轴承故障诊断模型[J].Journal of Mechanical & Electrical Engineering, 2022, 39(11).

[5]霍志浩,尹安,陈洁灵,等.基于CNN-LSTM的轴系系统故障诊断系统设计与实现[C]//第32届中国过程控制会议(CPCC2021)论文集.2021.

🌈Python代码、数据、文档说明书下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值