Description
A cinema has n rows of seats, numbered from 1 to n and there are ten seats in each row, labelled from 1 to 10 as shown in the figure above.
Given the array reservedSeats containing the numbers of seats already reserved, for example, reservedSeats[i] = [3,8] means the seat located in row 3 and labelled with 8 is already reserved.
Return the maximum number of four-person groups you can assign on the cinema seats. A four-person group occupies four adjacent seats in one single row. Seats across an aisle (such as [3,3] and [3,4]) are not considered to be adjacent, but there is an exceptional case on which an aisle split a four-person group, in that case, the aisle split a four-person group in the middle, which means to have two people on each side.
Example 1:
Input: n = 3, reservedSeats = [[1,2],[1,3],[1,8],[2,6],[3,1],[3,10]]
Output: 4
Explanation: The figure above shows the optimal allocation for four groups, where seats mark with blue are already reserved and contiguous seats mark with orange are for one group.
Example 2:
Input: n = 2, reservedSeats = [[2,1],[1,8],[2,6]]
Output: 2
Example 3:
Input: n = 4, reservedSeats = [[4,3],[1,4],[4,6],[1,7]]
Output: 4
Constraints:
- 1 <= n <= 10^9
- 1 <= reservedSeats.length <= min(10*n, 10^4)
- reservedSeats[i].length == 2
- 1 <= reservedSeats[i][0] <= n
- 1 <= reservedSeats[i][1] <= 10
- All reservedSeats[i] are distinct.
分析
题目的意思是:给定一个电影院的场地,每行10个座位,要求找出4个连续座位的个数,其中走廊两边一边两个也算是相邻。我一开始觉得这个算法没法做了,后面发现别人的做法挺好,每行10个座位,所以能够列举出来每行连续4个座位的情况,然后判断是否属于这几种情况就行了。满足条件的座位序号为:
f1=[2,3,4,5]
f2=[4,5,6,7]
f3=[6,7,8,9]
然后用一个字典统计每行的座位占用情况,最后遍历字典是否满足上面三种情况就知道有多少种连续4个座位相邻的情况,最后字典不包括某一行没有座位占用的情况,因此需要加上这种情况。
remain=(n-len(d))*2
代码
class Solution:
def maxNumberOfFamilies(self, n: int, reservedSeats: List[List[int]]) -> int:
d=collections.defaultdict(list)
f1=[2,3,4,5]
f2=[4,5,6,7]
f3=[6,7,8,9]
for item in reservedSeats:
d[item[0]].append(item[1])
res=0
for v in d.values():
f=[1,1,1]
for seat in v:
if(seat in f1):
f[0]=0
if(seat in f2):
f[1]=0
if(seat in f3):
f[2]=0
if(f[0]==1 or f[2]==1):
f[1]=0
res+=sum(f)
remain=(n-len(d))*2
return res+remain