[leetcode] 897. Increasing Order Search Tree

二叉排序树转换为仅有右结点的排序树
该博客介绍了如何将一个二叉排序树重新排列,使其成为每个节点只有右孩子的形式。提供了两种方法,一种是通过中序遍历重新构造,另一种是递归地使用一个辅助节点。代码示例展示了如何实现这一转换,最后返回新的根节点。

Description

Given a binary search tree, rearrange the tree in in-order so that the leftmost node in the tree is now the root of the tree, and every node has no left child and only 1 right child.

Example 1:

Example 1:
Input: [5,3,6,2,4,null,8,1,null,null,null,7,9]

       5
      / \
    3    6
   / \    \
  2   4    8
 /        / \ 
1        7   9

Output: [1,null,2,null,3,null,4,null,5,null,6,null,7,null,8,null,9]

 1
  \
   2
    \
     3
      \
       4
        \
         5
          \
           6
            \
             7
              \
               8
                \
                 9  

Constraints:

  • The number of nodes in the given tree will be between 1 and 100.
  • Each node will have a unique integer value from 0 to 1000.

分析

题目的意思是:给定一个二叉排序树,然后变成一个只有右结点的二叉排序树。最简单的做法就是二叉树的中序遍历以后再构造一个只有右结点的二叉排序树就行了。还有另一种递归的解法,我比较欣赏,利用一个空结点cur来指向根结点,然后进行中序遍历,对于左子树,先递归,然后cur的右结点指向左子树,然后cur指向当前节点,再遍历右结点。比较抽象。最后返回该空结点的右节点就是结果了。

代码

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    pre = None

    def inorder(self,root):
        if not root:
            return 
        self.inorder(root.left)
        root.left=None
        self.pre.right = root
        self.pre = root
        self.inorder(root.right)


    def increasingBST(self, root: TreeNode) -> TreeNode:
        dummy = TreeNode(-1)
        dummy.right = root
        self.pre = dummy
        self.inorder(root)
        return dummy.right

参考文献

[LeetCode] solution

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农民小飞侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值