Description
Given the following details of a matrix with n columns and 2 rows :
- The matrix is a binary matrix, which means each element in the matrix can be 0 or 1.
- The sum of elements of the 0-th(upper) row is given as upper.
- The sum of elements of the 1-st(lower) row is given as lower.
- The sum of elements in the i-th column(0-indexed) is colsum[i], where colsum is given as an integer array with length n.
Your task is to reconstruct the matrix with upper, lower and colsum.
Return it as a 2-D integer array.
If there are more than one valid solution, any of them will be accepted.
If no valid solution exists, return an empty 2-D array.
Example 1:
Input: upper = 2, lower = 1, colsum = [1,1,1]
Output: [[1,1,0],[0,0,1]]
Explanation: [[1,0,1],[0,1,0]], and [[0,1,1],[1,0,0]] are also correct answers.
Example 2:
Input: upper = 2, lower = 3, colsum = [2,2,1,1]
Output: []
Example 3:
Input: upper = 5, lower = 5, colsum = [2,1,2,0,1,0,1,2,0,1]
Output: [[1,1,1,0,1,0,0,1,0,0],[1,0,1,0,0,0,1,1,0,1]]
Constraints:
- 1 <= colsum.length <= 10^5
- 0 <= upper, lower <= colsum.length
- 0 <= colsum[i] <= 2
分析
题目的意思是:根据给定条件,重建二进制矩阵,其中行和的最大值在第一行,行和最小值在第二行;colsum表示每列的1的和。这道题想明白了思路就很简单,遍历colsum,然后进行填数,如果当前的值为2,则这一列都需要填上1,如果为1,则要看upper和lower是否满足条件,优先填第一行,即upper>lower的时候,填第一行;否则填第二行。
代码
class Solution:
def reconstructMatrix(self, upper: int, lower: int, colsum: List[int]) -> List[List[int]]:
n=len(colsum)
res=[[0]*n for i in range(2)]
for i in range(n):
col=colsum[i]
if(col==2):
res[0][i]=1
res[1][i]=1
upper-=1
lower-=1
elif(col==1):
if(upper>lower):
upper-=1
res[0][i]=1
else:
lower-=1
res[1][i]=1
if(upper==0 and lower==0):
return res
else:
return []