[leetcode] 1536. Minimum Swaps to Arrange a Binary Grid

本文探讨了如何通过最少的行交换操作,将给定的nxn二进制网格调整为所有对角线元素都为0的有效状态。算法涉及计算每行中1的位置并动态调整,确保每次操作最大化减少无效对角线元素。解决了一个关于优化矩阵操作的问题,并提供了实例和代码实现。
摘要由CSDN通过智能技术生成

Description

Given an n x n binary grid, in one step you can choose two adjacent rows of the grid and swap them.

A grid is said to be valid if all the cells above the main diagonal are zeros.

Return the minimum number of steps needed to make the grid valid, or -1 if the grid cannot be valid.

The main diagonal of a grid is the diagonal that starts at cell (1, 1) and ends at cell (n, n).

Example 1:

Input: grid = [[0,0,1],[1,1,0],[1,0,0]]
Output: 3

Example 2:

Input: grid = [[0,1,1,0],[0,1,1,0],[0,1,1,0],[0,1,1,0]]
Output: -1
Explanation: All rows are similar, swaps have no effect on the grid.

Example 3:

Input: grid = [[1,0,0],[1,1,0],[1,1,1]]
Output: 0

Constraints:

  • n == grid.length
  • n == grid[i].length
  • 1 <= n <= 200
  • grid[i][j] is 0 or 1

分析

题目的意思是:给定nxn的二进制网格,现在可以交换网格的行,求最小的交换步骤使得网格的对角线全0.

  • 用pos数组记录每行最有边为1的位置,遍历每一行求的。
  • 从上到下逐行确定,对于第 i 行,只要找到第 i…n−1 行中使得 pos[j]≤i 成立的最近的那一行 j,我们将这一行交换到第 i行即可,它对答案的贡献为 j-i。

代码

class Solution:
    def minSwaps(self, grid: List[List[int]]) -> int:
        n=len(grid)
        pos=[-1]*n
        for i in range(n):
            for j in range(n-1,-1,-1):
                if(grid[i][j]==1):
                    pos[i]=j
                    break
        res=0
        for i in range(n):
            k=-1
            for j in range(i,n):
                if(pos[j]<=i):
                    res+=j-i
                    k=j
                    break
            if(k!=-1):
                for j in range(k,i,-1):
                    pos[j],pos[j-1]=pos[j-1],pos[j]
            else:
                return -1
        return res

参考文献

排布二进制网格的最少交换次数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

农民小飞侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值